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Samples

Samples:

• Grey-Luvic Phaeozems (Sample 1,2) and Chernozems (samples 3-7)

Segmentation to obtain True data:

• converging active contours (Sheppard et al., 2004) and region growing 
(Mehnert and Jackway, 1997) algorithms

Neural network architecture:

• U-net architecture. the U-net encoder replaced with ResNet101 encoder 



Soil samples and segmentation differences



The general architecture of neural network used in this study. The lower part represents vanilla U-net architecture. 
The upper part shows ResNet101 architecture. In our neural network we replaced the U-net encoder with ResNet101 
encoder (these parts are highlighted with dotted line areas).



General segmentation results
Computer vision metrics for neural network-based binarizations

Sample Accuracy Precision Recall F1 PR_AUC IOU

1 0.990278 0.943769 0.996358 0.969351 0.998623 0.940524

2 0.996335 0.968988 0.993439 0.981061 0.998841 0.962826

3 0.973652 0.820249 0.995574 0.899447 0.990357 0.817269

4 0.939552 0.792140 0.999917 0.883983 0.996171 0.792088

5 0.969022 0.998757 0.865202 0.927195 0.996564 0.864272

6 0.975915 0.863557 0.994796 0.924542 0.993793 0.859673

7 0.958027 0.998234 0.760084 0.863031 0.989519 0.759064

Computer vision metrics for neural network-based binarizations with training on all 3D images.

Sample Accuracy Precision Recall F1 Pr_auc iou

1 0.993453 0.954353 0.997504 0.975451 0.999157 0.952079

2 0.993797 0.951161 0.995484 0.972818 0.998651 0.947074

3 0.983351 0.884995 0.991901 0.935403 0.992297 0.878646

4 0.966813 0.873061 0.997794 0.931269 0.994909 0.871378

5 0.983910 0.964919 0.956062 0.960470 0.995234 0.923946

6 0.985962 0.926988 0.992029 0.958406 0.997118 0.920134

7 0.978669 0.908644 0.985702 0.945606 0.994329 0.896824



General segmentation results
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Single phase flow simulation results
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Samples 4,6,7 have quiet different structure



The influence of the threshold value on the 
quality of the segmentations.

The pairwise and total distances between samples in terms of: a) 
correlation functions for TD images, and b) covariances for original 
XCT greyscale images.



Highlights:

• We present the first results for soil XCT image segmentation using 
neural networks.

• Depending on the sample the accuracy in terms of permeability 
reached 5% error. 

• To segment soil images we utilized hybrid U-net+Resnet101 
architecture.

• Low accuracy cases can be explained by low representativity of XCT 
images.

• Larger image libraries, better true data and network architecture 
were proposed as ways forward.
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