
/ 18 

EGU 2020 EGU 2020 

 

Chaojian Chen1, Mikhail Kruglyakov1,2, and Alexey Kuvshinov1 

 

1 Institute of Geophysics, ETH Zurich, Switzerland (chaojian.chen@erdw.ethz.ch) 
2 Geoelectromagnetic Research Centre, Institute of Physics of the Earth, Moscow, Russia 

1 

Global-to-Cartesian 3-D EM modeling using a nested IE approach 

with application to long-period responses from island 

geomagnetic observatories 



/ 18 

EGU 2020 EGU 2020 

2 

Probing mantle conductivity using observatory data 

 Constraining global 3-D model of uniform lateral 

resolution is probably not feasible due to:  
 

 Irregular distribution of geomagnetic observatories 

 Diffusion character of EM induction (sensitive only 

around locations) 

What is feasible: 
 

 Constraining local 1-D models beneath island 

observatories 

Geomagnetic observatories 

 But there is a lot of interest to constrain mantle 

conductivity distributions beneath oceans 



/ 18 

EGU 2020 EGU 2020 

3 

Deep mantle structures are obtained by inverting local C-responses 
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 Data to estimate C-responses is magnetic field variations in the period range 

between a few days and a few months due to a magnetospheric (ring current) 

source  
 

 Source is described via first zonal harmonic  
 

 Assuming this source geometry one determines the C-response as (Banks, 1969): 

Banks, R. Geophysical Journal International, 1969, 17(5): 457–487. 

𝐫𝑎 = (𝑎, 𝜃, 𝜙 − observatory′s coordinate, 𝑤 − frequency, 𝑎 − the Earth’s radius, 𝜃 −
geomagnetic colatitude, 𝐵𝑟 and 𝐵𝜃 − the radial and horizontal components of the 

magnetic field 
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Challenge 

 C-responses at island observatories may be strongly distorted by the ocean induction effect 

(OIE) originating from conductivity contrasts between ocean and land 
 

 The OIE in C-responses is generally modeled by global thin shell simulations using relatively 

coarse (1ox1o) grid 

Thin shell is used to account for the OIE 

uniform 1-D layers 
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Challenge 

 Noticeable disagreement between imaginary parts of modeled and observed responses at 

island observatories (at periods shorter than two weeks) was detected (Munch et al., 2018)  
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Munch, F. D., Grayver, A. V., Kuvshinov, A., & Khan, A. JGR: Solid Earth, 2018, 123(1), 31-51. 

Whether the discrepancy is due to very local bathymetry that is not accounted for 

in “coarse (1ox1o) grid” modeling? 
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Accounting for OIE requires numerical solution of Maxwell’s equations 
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 Maxwell’s equations: 

 For this problem setup, integral equation method is 

preferred, as only discretization of thin shell is needed 
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IE method in a nutshell 

 Solve numerically: 
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 Then, electric and magnetic fields are calculated as: 
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background electric and magnetic fields 

electric and magnetic Green’s tensors 
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Using fast Fourier transform (FFT) dramatically decreases computational 

loads (both in time and memory) 
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Challenge with existing FFT-based IE 

 Three ways to account for the very local 3-D effects within IE approach 

1) FFT, uniformly fine grid (computationally expensive) 2) No FFT, adaptive grid (computationally expensive) 

 

3) Nested IE approach (computationally efficient) 

 Step 2: FFT, uniformly fine grid 

 Step 1: FFT, uniformly coarse grid 
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Nested IE approach 

 Calculate EM field in the whole domain 

on a coarse grid 

 Calculate EM field in the local domain          

on a fine grid 
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: projection operator 
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Global-to-Cartesian (G2C) approach 

① Global (spherical) IE solver: X3DG (Kuvshinov, 2008) 
 

② Regional (Cartesian) IE solver: PGIEM2G (Kruglyakov & Kuvshinov, 2018) 

Kuvshinov, A. V. Surveys in Geophysics, 2008, 29(2), 139-186. 

Kruglyakov, M., & Kuvshinov, A. Geophysical Journal International, 2018, 213(2), 1387-1401. 
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Modeling C-responses at CKI and HON 

 Spherical grid: 1º x 1º 
8 

 

 Cartesian grids: from 1º x 1º (100 km x 100 km) to 0.01º x 0.01º (1 km x 1 km) 
 

 

 1-D profiles beneath CKI and HON are taken from Munch et al., (2018) 

 

 

Local 1 km x 1 km 

conductance distribution  

Global 1º x 1º conductance distribution  
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OIE in C-responses at CKI 

 Good agreement of responses calculated by global and G2C approaches using the same grid of 1º x 1º 

validates the G2C approach 
 
 C-responses modeled at different grids differ much but “saturation” occurs at grid of 0.02º x 0.02º 

 

 C-responses modeled using only local (Cartesian) domain differ from those modeled with G2C tool 
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OIE in C-responses at HON 

 For HON observatory, conductance resolution of 0.3o x 0.3o is sufficient to account for the OIE 
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Obtaining new 1-D profiles beneath CKI and HON 
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 Correction of observed C-responses 

 1-D inversion of the corrected responses Cobs,corr 

1D :C

1D+shell :C

C-responses computed using 1-D profile obtained 

by Munch et al., (2018) 

C-responses computed using 1-D profile 

overlaid by laterally non-uniform surface shell 
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Modeled and observed C-responses at CKI 

 C-responses were computed in the model with the 0.01o x 0.01o surface shell and new and old 

1-D mantle conductivity profiles underneath CKI. 
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Modeled and observed C-responses at HON 

 C-responses were computed in the model with the 0.01o x 0.01o surface shell and new and old 

1-D mantle conductivity profiles underneath HON. 
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Conclusions 

 Global-to-Cartesian 3-D EM modeling method based on a nested IE approach 

is developed 
 

 Very local bathymetry significantly influences the island C-responses 
 
We obtain new 1-D conductivity models beneath CKI and HON, and observe 

impressive agreement between modeled and experimental responses 

For more details: Chen, C., Kruglyakov, M., & Kuvshinov, A. (2020). A new method  for 

accurate and efficient modeling of the local ocean induction effects. Application to long-

period responses from island geomagnetic observatories. Geophysical Research Letters, 

47, doi.org/10.1029.2019GL086351 
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Outlook 

 Joint inversion of MT tippers (Morschhauser et al., 2019), Sq and Dst Global-

to-local transfer functions (Püthe et al., 2015; Guzavina et al., 2019) using 

data from as many island geomagnetic observatories as possible 

Morschhauser, A., Grayver, A., Kuvshinov, A., Samrock, F., & Matzka, J. Earth, Planets and Space, 2019, 71(1), 17. 

Püthe, C., Kuvshinov, A., & Olsen, N. Geophysical Journal International, 2015, 201(1), 318-328. 

Guzavina, M., Grayver, A., & Kuvshinov, A. Geophysical Journal International, 2019, 219(3), 2125-2147. 


