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Research questions 

 
The described gradient of the organic matter degradability from upstream to downstream of the 
Elbe river (Zander et al. 2020) leads to the following questions: 

 
• How does the organic matter quality vary along the upstream-downstream transect? 

 
• How do the organic matter quality (origin and physicochemical properties) and sediment 

properties influence the organic matter degradability? 
 

• Can long-term degradation of sediment organic matter be inferred from short-term 
measurements? 

 

Zander, F., Heimovaara, T., Gebert, J. (2020): Spatial variability of organic matter degradability in tidal Elbe sediments. Journal of Soils and Sediments. DOI  
https://doi.org/10.1007/s11368-020-02569-4.  

https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
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Investigation area: Port of Hamburg, Germany 

HAMBURG 
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Sampling locations, P1 to P9  

 Grey dots: 
focussed 
locations 
where DOC 
fractionation 
analyses were 
performed 
 

Downstream, km 643 

Upstream, km 616 
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Sampling procedures 

• 1 m core of the first sediment 
layers (7 to 17 m depth below 
water level) 

• Stratified sampling of 
individual layers (see next 
slide) 

• Sampling from March to  
November 1 x per month in 
2018 and 2019 
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A detailed  
look reveals... 

• A multi-layered 
system, layers differ in 
– Flow behaviour (rheology) 
– Color (redox potential) 
– Density (in-situ) 
– Water content 
– C content and C 

mineralisation 
– ... And many more 

properties 

• Consolidation  
chrono-sequence 

• > 80% fines (< 63 μm) 
• FM = lutocline / “river 

bottom” 
 

Pre-consolidated 
sediment PS 

Fluid mud FM 

Oxidized or reduced 

Reduced 

Reduced 

Consolidated 
sediment CS 

Suspended particulate matter SPM, oxidized 
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Methods 

 

• Quantification of organic matter degradation and degradability 
– Long-term anaerobic incubations  to quantify C mineralisation (> 250 d) 
– Organic matter pools (inferred from degradation rates) 

• Selected properties of Elbe river water 
– Chlorophyll content 

• Selected sediment properties 
– Biological parameters 

• Extrapolymeric substances (EPS) 
• Microbial biomass  

– Chemical parameters 
• DOC fractions (water and acid/base extractable) 
• Total DOC 
• Share of HoN, HA, Hi, and FA 

– Physical parameters: 
• Density fractionation 

• Correlation analyses 
– Influence of abiotic and biotic sediment properties on organic matter degradability 

Time 
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Water properties: chlorophyll concentration 

• Chlorophyll gradient from upstream to downstream (measured in situ) 
– Small figure: multi-peak algae plume near location P8 (Hamburg Service portal, 2017-2020) 
– P0 (river-km 599) and P10 (river-km 646) are showing data from FGG server (Elbe data portal, 2020) 

 

Hypothesis: Greater input of easily degradable organic 
matter (algae) at upstream locations (from P0) 
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Determination of organic matter pools  
• Organic matter pools are defined by OM degradation rate (k) / half life 

• Prediction of gas generation with e.g. three phase function (y = A1*exp(-x/t1) + A2*exp(-x/t2) + 
A3*exp(-x/t3) + y0) 

• Example for a three phase function 
– Total (assumed) gas generation: 14% TOC Exemplary cumulative C-degradation curve 
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Determination of organic matter pools  
The borders between organic matter pools were chosen with respect to the overall range of organic matter 
decay rates (0.5 to 500 days): 
• Borders between pool one and pool two: half life of 5 days, corresponding degradation rate k: 0.06 
• Between pool two and pool three: 50 days, corresponding degradation rate k: 0.006  
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• Half live of the anaerobic samples varied 
between 0.5 days and 500 days, 
corresponding decay rates varied between 
0.6 and 0.0006 

• Samples with greater decay rate than 0.06 
belonged to pool 1 (k1) 

• Samples with decay rate smaller than 0.006 
days belonged to pool 3 (k3) 
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Organic matter pools upstream vs. downstream 
• Anaerobic organic matter pools from June campaign 2018 
• Upstream: more degradable OM and bigger pool 1 (fast degradable OM) 
• Downstream: mostly pool 3 (slow degradable OM) 
• N > 20 
 
 

Downstream, km 643 Upstream, km 616 
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Hypothesis: easily degradable OM at upstream is degraded on 
its way downstream, this can show an age gradient and/or a 
source gradient. FM and PS only show pool 3 material – easily 
degradable material has been degraded. 
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Anaerobic pool sizes with depth 
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• Pool 1 is dominant at FM layers, pool 3 at CS layers.  
• Pool 2 is about one third of the total pool size 
• For each layer, around one half of have of the pool 

size is made out of pool 3 
• n > 50 

 
 

Increasing depth 
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Chemical organic matter fractionation 

Methods 

• Acid/base extraction 
• Water/CaCl2 extraction 
• Total DOC is separated into several fractions (e.g. humic acids, fulvic 

acids, hydrophilic fraction, etc.) 
 

• Here: focus on the hydrophilic DOC fraction (Hi) 

For methods also see: Van Zomeren and Comans 
(2007), DOI https://doi.org/10.1021/es0709223 

https://doi.org/10.1021/es0709223
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Hydrophilic (Hi) DOC fraction (per DW / per TOC) 

River-km 616 

River-km 643 

River-km 619 
River-km 624 

• Decreasing gradient from upstream to downstream 
• High Hi concentrations at areas with high OM degradation (high input of fresh OM) 
• High ratio between acid-base(AB)- and water-extraction at downstream due to low water 

extractable Hi 
• Acid/base extraction is not/barely available for microbial organic matter degradation 

 
Hypothesis: Hi is mostly responsible for the fast OM degradation and therefore an indicator for high OM 
quality at upstream locations 
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Hi fraction vs. anaerobic OM-pools, PS layers, 2018 

• Fast and moderate degradable organic matter pools 
(pool 1 and pool 2) are correlating well with 
hydrophilic DOC fraction 

• Slow degradable pool 3 is not correlating with Hi 
fraction 

 
Hypothesis: pool 3 is not influenced by the Hi fraction. 
Pool 1 and pool 2 are driven by easily degradable OM, 
e.g. Hi fraction 
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Silicic acid, biomass, respiration activity (AT3h), EPS, PS layers, 
2018+2019 

 
• Downstream: lowest total amount of 

biomass, anaerobic OM degradation after 
100 days (G100) silicic acid and oxygen 
consumption after three hours (AT3h, lab 
value) 

• Sample n between six and 18 
 
Hypothesis: upstream is found more silicic acid, 
produced by algae, and more EPS, due to 
microbial activity, both resulting in a higher 
oxygen consumption, higher organic matter 
degradation and bigger pool 1 (not shown) 
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Density fractionation: light organic matter fraction, 2019 

• Upstream sediments contain higher concentrations of easily degradable organic matter per dry weight 
(left graph) 

– Association of OM with mineral phase at downstream locations 
• Correlation hydrophilic DOC fraction with light density fraction (right graph) 
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Research questions: 

• Can long-term degradation of sediment 
organic matter (SOM) be predicted from 
short-term degradation experiments? 

• Is the relationship between short-term and 
long-term carbon mineralisation similar for 
different sites in Port of Hamburg and at any 
one site, for different layers? 

Δ ? 
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Relationship between short-term and long-term anaerobic C release by site,  
           all layers included (SPM, FM, PS, CS) 

• Upstream locations show higher 
anaerobic C mineralisation than 
downstream sites (compare Zander et al., 2020) 

• Upstream locations  show much 
higher correlation coefficients 
between short-term and long-term 
cumulative C-mineralisation 

• At the most downstream point P9, 
which is also hydrodynamically most 
dynamic, inferring C mineralisation 
beyond  21 days from short-term 
measurements bears large 
uncertainty 

• Slopes differ per site, higher slopes 
upstream, lower slopes downstream 

x-axis: cumulative anaerobic  C release after 10 days of incubation (G10), y-axis: cumulative C release after 21, 50, 100, 150 and 250 days 

Zander, F., Heimovaara, T., Gebert, J. (2020): Spatial variability 
of organic matter degradability in tidal Elbe sediments. Journal 
of Soils and Sediments. DOI  https://doi.org/10.1007/s11368-
020-02569-4.  
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Relationship between short-term and long-term anaerobic C release by layer, 
         all four sites included (P1, P2, P8, P9) 
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• Top layers show higher cumulative C 
mineralisation than deeper layers 
(compare Zander et al., 2020) 

• High quality of correlation when 
sample pool is separated by layer 
rather than by site (previous slide) 

• Larger variability in bottom layers PS 
and CS 

x-axis: cumulative anaerobic  C release after 10 days of incubation (G10), y-axis: cumulative C release after 21, 50, 100, 150 and 250 days 

Zander, F., Heimovaara, T., Gebert, J. (2020): Spatial variability 
of organic matter degradability in tidal Elbe sediments. Journal 
of Soils and Sediments. DOI  https://doi.org/10.1007/s11368-
020-02569-4.  

https://doi.org/10.1007/s11368-020-02569-4
https://doi.org/10.1007/s11368-020-02569-4
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Ratio of G250 to G10 along transect and by layer 

• Factor between long-term and short-
term C mineralisation is most 
uniform across all layers at upstream 
sites 

• Higher variability of factor at 
downstream sites 

• Difference between long-term and 
short-term anaerobic C 
mineralisation increases from 
upstream to downstream 
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Conclusions 

 
• Organic matter with high degradability (e.g. algae) derived from upstream resulting in high 

chlorophyll, silicic acid, biomass and EPS concentration as well as oxygen consumption. 
 

• The hydrophilic DOC fraction (Hi) correlates well with fast organic matter degradation (e.g. 
light density fraction) and is therefore an indicator for high organic matter lability at upstream 
locations. 

 

• Slowly degradable pool 3 material is found more often at downstream locations, easily 
accessible organic matter at upstream is degraded on its way downstream (age/source 
gradient). 

 

• The pool determination is a suitable tool to separate between fast, intermediate and slow 
degradable organic matter. 
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Conclusions 

 
• Different sites along the transect P1 → P9 and the different layers are 

characterised by different quality of SOM, reflected by different specific 
relationships between long-term and short-term C mineralisation 

• Predictability of anaerobic C mineralisation increases when sediments are 
separated by layer rather than by site, indicating that specific SOM quality is 
associated with individual layers 

• Higher uniformity of SOM mineralisation upstream may be due to single-
source input (from upstream), whereas downstream locations receive OM 
from both upstream (river catchment) and downstream directions (North 
Sea) which is assumed to differ in composition/quality and degree of 
association with the mineral phase 
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Thank you for your attention ! 

Contact: f.zander@tudelft.nl and j.gebert@tudelft.nl www.tudelft.nl/mudnet 
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