

1

Integrated time-lapse geophysical surveys for hydrogeological characterisation and monitoring of a clayrich landslide in North Yorkshire, UK

Jim Whiteley^{1,2}, Sebastian Uhlemann³, Arnaud Watlet¹, Jimmy Boyd^{1,4}, Jonathan Chambers¹, Michael Kendall⁵ and the Landslide Geophysics Consortium

¹Geophysical Tomography, British Geological Survey, Nottingham, UK

² School of Earth Sciences, University of Bristol, Bristol, UK
 ³ Lawrence Berkeley National Laboratory, Berkeley, USA
 ⁴ Lancaster Environment Centre, Lancaster University, Lancaster, UK
 ⁵ Department of Earth Sciences, University of Oxford, Oxford, UK

Contact: jwhi@bgs.ac.uk

High spatial resolution (HSR) geophysics for landslide monitoring

140 0 10 20

27

120

> 30 %

© Authors. All rights reserved HSR methods reveal spatial properties related to shear strength (τf), where c is cohesion, σ is total

normal stress, u is pore water pressure, and ϕ'_{cv} is the angle of shear resistance:

2 Aim: Use HSR geophysics to monitor material variation and improve ground model development

The Hollin Hill Landslide Observatory

- Slow moving (max. 3.5 m per year), stick-slip, complex earth-slide / earth-flow.
- Clay-rich, poorly drained Whitby Mudstone (WMF) fails over free-draining Staithes Sandstone (SSF).

HSR geophysical data acquisition

- 11 ERT surveys acquired from on-site automated ALERT system.
- 11 SRT surveys acquired, both measuring P-wave (Vp) and S-wave (Vs) velocity.
- Both ERT and SRT data acquired at comparable resolution (ERT electrode spacing =
 - 4.5m, SRT geophone spacing = 2m) and close together in time.
- Reliability of comparison between datasets dependent on number of days

difference between survey dates.

Time-step	SRT survey date	ERT survey date	Days difference
0	18/10/2016	10/11/2016	-23
1	29/11/2016	01/12/2016	-2
2	25/01/2017	12/01/2017	13
3	19/04/2017	30/03/2017	20
4	22/06/2017	12/06/2017	10
5	08/08/2017	14/08/2017	-6
6	11/10/2017	09/10/2017	2
7	30/01/2018	08/02/2018	-9
8	28/03/2018	15/03/2018	13
9	15/06/2018	14/06/2018	1
10	09/08/2018	02/08/2018	7

Surveys within 1 week of each other (most reliable) Surveys within 2 weeks of each other Surveys more than 2 weeks apart (least reliable)

Movement and geophysical / environmental monitoring

© Authors. All rights reserved Rainfall data from on-site weather station, moisture / movement data from wireless sensors.

Data processing

- ERT processed using time-lapse inversion (see Uhlemann et al., 2017).
- SRT processed using 'reference' inversion; no SRT time-lapse inversion code (see Whiteley et al., 2020).

Results

- Authors. All rights reserved
 Average velocity / resistivity sections (top row) show average across the time-series (i.e., 11 surveys).
- Standard deviation plots (bottom row) show the areas of greatest variation across the time-series, indicating the areas of the landslide in which material properties have changed over time.

Monitoring processes using HSR methods (1)

- Data from all surveys sampled to common grid to give subsurface points with values of Vp, Vs and resistivity.
- Cross-plots of point values (of whole time-series) with points coloured with elevation reveals spatial groupings of data.

800

600

200

Resistivity vs Vp (whole time-series)

Resistivity vs Vs (whole time-series)

Res. vs Vp / Vs (whole time-series)

Monitoring processes using HSR methods (2)

- Resistivity threshold (100 ohm.m) used to distinguish between clay-rich WMF and clay-deficient SSF.
- ERT and Vp / Vs ratio show groupings of data; isolating different units shows field relationships.

Monitoring processes using HSR methods (3)

 Petrophysical relationship applied to resistivity (Uhlemann et al., 2017) to produce gravitational moisture content (GMC) for comparison with Vp / Vs ratio.

Improving the ground model using integrated surveys

- k-means algorithm to classify geophysical / spatial inputs, rather than use resistivity threshold for lithology.
- Inputs: resistivity, Vp / Vs, elevation and depth of point
- Clustered ground model closer to manually interpreted model

Resistivity threshold model

Conclusions

- High spatial resolution geophysics, particularly co-located ERT and SRT surveys, provide a useful tool for delineating landslide units based on geophysical properties.
- Time-lapse data from 22 months at the Hollin Hill Landslide Observatory show relationships between co-located geophysical measurements, indicating different units in subsurface.
- Ground models can be improved with the use of automatic classification algorithms, and can be used to improve time-lapse analysis.
- Future work will focus on analysing time-lapse variations within clustered ground model units to assess variations of geophysical properties.

References

- Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Meldrum, P., Kuras, O., Gunn, D., Smith, A. & Dijkstra, T. 2017. Four-dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research: Earth Surface, 122, 398-418.
- Whiteley, J. S., Chambers, J. E., Uhlemann, S., Boyd, J., Cimpoiasu, M. O., Holmes, J. L., Inauen, C. M., Watlet, A., Hawley-Sibbett, L. R., Sujitapan, C., Swift, R. T. & Kendall, J. M. 2020. Landslide monitoring using seismic refraction tomography - The importance of incorporating topographic variations. Engineering Geology, 268, 105525.