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Motivation 
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 high demand for up-to-date 
information about humus 
conditions is important for  

     site-adapted management 
 continuous impact through  
     element input, management  
     measures and changing 
     climate 
 need for inexpensive and fast 
     methods 
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Background 
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 Vis-NIR spectroscopy as known method to estimate physical 
and chemical soil properties (see Kooistra et. al. (2001), Gubler 
(2011), Riedel et. al. (2018)) 

 Application so far mainly on agricultural sites and mineral soils 
 First examples for analysis of forest  
     soils (Ludwig et. Ak. 2017) 
 Usage of organic layers 
     (Cardelli et. al. 2017) 
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Aim 
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 Proximal soil sensing as support for forest monitoring 
 Cooperation: Public Enterprise Sachsenforst and UFZ 
 Analysis of forest soil samples with vis-NIR spectroscopy and 

setup of a spectral library 
 Modelling of soil parameters 
 Development of a fast, cost-efficient and applicable procedure 

for periodic forest soil mapping as supplement for current 
methods 



Data Collection 
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• 378 retained samples (National Forest Soil Inventory and 
samples from test sites) from Saxony 

• 109 additional samples from field campaign 2019 
• Satellite sampling scheme (8 satellites per point, Ah/Oh horizon) 
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Data Collection 
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Spectral data 
Protocol: Capture variability of ech sample 
  Veris VIS-NIR Spectrophotometer 
 Per samples five measurements from  
     two petri dishes (ten in total) 
 turn/shift der sample after each run 
 Taking external references before  
     each sample 
Preprocessing 
 Removing Wavelengths 
 Savitzky-Golay Filter  
 Standard Normal Variate  
 Outlier detection 

 
      
  

 
 
 



Regression Analysis 
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Algorithms 
 Partial Least Square Regression (PLSR) 
 Suport Vector Machine (SVM) 
 
Target Variables 
 C, N, pH-value, base saturation 
 Usage of logarithmic values 
 Separation of the data according to soil horizons and forest 

stand 
 
Validation 
 Independent test set (train/test split 70/30) 
 10-fold cross validation (cv) 
 Plots (predicted/observed), RMSE, R2 

 New data from 2019 as independet test data set 
 
 

 

 
 
 



Selected Results: Carbon 
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Prediction results for carbon content based on retained samples 
for both algorithms 

 

R²: 0.8 (cv), 0.8 (test) 
RMSE: 5.8 (cv), 5.9 (test) 

R²: 0.82 (cv), 0.85 (test) 
RMSE: 5.4 (cv), 4.9 (test) 



Selected Results: Carbon 
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Prediction results for carbon content based on retained samples 
for both algorithms in pine stands 

 

R²: 0.84 (cv), 0.87 (test) 
RMSE: 4.9 (cv), 4.4 (test) 

R²: 0.86 (cv), 0.94 (test) 
RMSE: 4.4 (cv), 3.2 (test) 



Selected Results: Carbon 
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Prediction results for carbon content based on retained samples 
for both algorithms in spruce stands 

 

R²: 0.91 (cv), 0.9 (test) 
RMSE: 3.8 (cv), 4.8 (test) 

R²: 0.91 (cv), 0.92 (test) 
RMSE: 4 (cv), 3.9 (test) 



Selected Results: Carbon 
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Prediction results for carbon content based on retained samples with 
independent predictions for new data (red), for both algorithms 

R²: 0.77 
RMSE: 7.7 

R²: 0.92 
RMSE: 4.1 



Selected Results: Carbon 
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Prediction results for carbon content based on retained and new 
samples for both algorithms 

R²: 0.78 
RMSE: 6.25 

R²: 0.84 
RMSE: 5.23 



Selected Results: Carbon 
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• R2 values range from 0.25 to 0.94  
• RMSE ranges from 1.78 to 7.69 
• SVM produces more accurate predictions 
• Separating horizons results in lower performance 
• Increase in prediction accuracy for spruce and pine stands 
• Models calibrated on retained samples are able to predict on 

new data from 2019 
• Combining retained samples and new data produces results 

comparable to modelling based on retained samples only 
• Model are robust to expansion of data basis 

 
 



Thank you for your attention! 
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Appendix 
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Partial Least Sqaure Regression 
 Introduced by Wold et. Al. to solve multivariate calibration 

problems 
 Extraction of components that describe the greates correlation 

between predictors and response variables 
 Implementation of regressions based on these components 

instead of original data 
 Highly reduces amount of data 
 Is used when many collinear predictors are in use 
 Reliable method to predict soil parameters 

 
 



Appendix 
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Support Vector Machines (SVM) 
 Representation of every object of the training data as a vector 
 SVM creates a hyperplane that sepearates the training objects 

in two classes while maximising the distance to the adjacent 
vectors  

 For the creation of the plane, only the adjacent vectors are 
required (support vectors, see picture) 

 
 
 

Müller, et. al. (2016) 
 



Appendix 

SEITE 18 

Value Distribution for retained (red) and new samples (blue) 
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