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I. Intro - Context
● Earth’s surface changed dramatically over the past century
● Publicly available, high resolution, satellite imagery is lacking prior to ~2000 to study such 

changes at multi-decadal time scales
● American declassified satellite images could fill in the gap!  … but processing is challenging.

Example of Columbia glacier, Alaska

Landsat 3 1979/09/07
 Pixel size: 60 m

Hexagon (mapping) 1979/06/15
~6 m

Hexagon (pano) 1980/08/23
~0.6 m
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I. Intro - US “spy” programs
● 1959-1972 - Corona (KH-1-6) series - 1.8-7.5 m resolution
● 1963-1984 - Gambit (KH-7-8) series - Up to 0.1 m
● 1973-1986 - Hexagon (KH-9) series - 0.6 m (pano camera), 6 m (mapping camera)

=> Available on USGS https://earthexplorer.usgs.gov/ (‘Declassified Data’ data set)

– Hexagon mapping camera : 29 000 images (∼4000 already scanned)
– All US spy satellites : 2 million (stereo) images over 20 years !

KH-9 mapping camera All other US “spy” satellites

We focus on 
this data set

Number of images

https://earthexplorer.usgs.gov/
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I. Intro - The Hexagon (KH-9) program
● 20 missions - 32-176 days duration
● main payload : 2 panoramic cameras - 0.6 m resolution
● 12/20 included a frame mapping camera (MC) - 6-9 m resolution
● Photo printed on film → 4 re-entry capsules ("buckets") snatched mid-air

More info:
- Burnett et al. (2012)
- Aizen & Surazakov
(2010)
- Maurer et al. (2015)

Challenges:
● Large (~ 2 GB) images scanned in 2 pieces + film distortion → heavy preprocessing
● Images crudely geolocated, no ground control points available
● Satellite position + lens characteristics poorly known or classified

KH-9 vehicle Aerial recovery of the film
(Maurer et al. (2015))

Example of a KH-9 MC film (46 x 23 cm2 )
over the Canadian Arctic

~260 km / 46 cm = 66K pixels
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I. Intro – Overview of the workflow

A preprocessing workflow: from scans to undistorted/croppped image
● Fully automated in Python (scikit, OpenCV libraries)
● ~1 hour to process one image on 1 core
→ Applied to ~700 images with less than 10 failures

A stereo processing: from stereo pairs to DEM + orthoimage
● Python wrappers around the NASA Ames Stereo Pipeline (link)
● Processing at ½ resolution → estimate camera intrinsic parameters
→ Applied to ~400 higher quality images to derive focal length & lens distortion for each mission
● Processing at full resolution with estimated parameters

Scanned film pieces Undistorted digital image Regional DEM

https://ti.arc.nasa.gov/tech/asr/groups/intelligent-robotics/ngt/stereo/
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II. Preprocessing - Methods

Goal: Generate distortion-free images suitable for photogrammetry. 
Preprocessing similar to that of Maurer et al. (2015), tuned and tested on ~700 images with varying 
conditions (deserts, ice caps, oceans…):
● Correction of distortion: (1) Detection of the 1081 fiducial markers (crosses) (2) Interpolation of 

the distortion in each pixel and correction.
● Image stitching : (1) The left/right image pieces are stitched together using interest-point 

matching (SIFT) in area of overlap. (2) Image is cropped to remove dark bands around the film.

Identification of the fiducial markers 
(left) and estimated film distortion 
(right), after removal of a 
rotation/scaling.
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II. Preprocessing - Results

The mean distortion from ~1400 image halves reveals systematic distortions:

A rotation and/or scaling, likely 
introduced during scanning – 3 markers are 
necessary to correct these.

After rotation/scaling correction, residual 
distortions of a few pixels (1 pix=7μm)m) is present, 
with a shear pattern, likely caused by the film 
advancing mechanism (on orbit and during 
scanning) – Only a réseau grid and thorough 
preprocessing can correct this.
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III. Stereo processing - Methods

From stereo pairs, we generate Digital Elevation Models (DEMs) using the open-source NASA Ames 
Stereo Pipeline (Shean et al., 2016).
Challenges: • Images are very crudely geolocated, no existing Ground Control Points (GCPs)
                • Satellite position and lens characteristics are unknown/classified.
 
Estimating the camera model: intrinsic + extrinsic parameters
(1) A pinhole camera model is created (documented focal length 304.8 mm, principal point at 
center) and its initial position/orientation are estimated from the image footprint provided by USGS.
(2) An initial DEM is generated with these cameras, at 1/2 resolution, then coregistered with a 
reference DEM (e.g. SRTM), using interest point matching between the shaded DEMs. The camera 
poses are updated.
(3) Several thousand “GCPs” are extracted, from the dense point-matching and external DEM, and 
used in bundle adjustment to refine the camera intrinsic parameters (focal length, lens distortion) 
for all pairs of each mission.

Final DEM: 
(1) The images are orthorectified with an external DEM to reduce the parallax between images. 
Residual parallax represent elevation changes between the KH-9 acquisition and reference terrain.
(2) A dense point cloud is generated using the Semi-Global Matching algorithm, with 7x7 pixels 
correlation windows.
(3) A final DEM is generated at 24 m resolution.
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III. Stereo processing - Results

With best known camera intrinsic parameters, elevation biases of ±20 m are present in KH-9 DEMs:
- large scale “Bull’s eye” pattern, due to unaccounted lens distortion (left figure, panel a)
- elevation bias correlated with topography, due to errors in the focal length (left figure, b)

By refining the camera intrinsic parameters for each KH-9 mission (5 to 16), we reduce elevation 
biases to less than 5 m (right figure).

Typical elevation biases  before  the  refinment of  camera  
intrinsic parameters (a) over flat terrains (Alaska) (b) in 
mountainous areas (central Alps) - mountain ranges are visible 
in red whereas valleys appear blue.

Average elevation error for each KH-9 mission as a 
function of radial distance to the optical center (top 
row) and normalized elevation (bottom row), before 
(left) and after (right) correcting the intrinsic 
parameters.
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IV. Pixel elevation uncertainty

The KH-9 DEMs are validated both on “stable 
terrain” (excluding glaciers) and on error-
prone glacier terrain in two test regions in 
South Alaska and in the European Alps. The 
validation is based on the elevation difference:
– between overlapping KH-9 DEMs from 

same/different orbits (top row).
– with reference DEMs (bottom row)

In brief, the uncertainty is ~5 m at 68% 
confidence interval (plain lines), respectively 
<15 m at 95% (dotted lines).

Note: DEMs obtained from topographic maps 
(“Hist 1977”) show the largest uncertainty 
(~15 m), highlighting the improved accuracy 
reached with KH-9 data. 

Reference DEMs: SRTM, TanDEM-X, ArcticDEM (Porter 
et al. 2018), the Swiss 2019 topography SwissAlti3D 
+ two historical DEMs in Alaska (1977, Berthier et al., 
2010) and in the Swiss Alps (1980, Ginzler et al, 2019; 
EGU2020)

European Alps Alaska

https://doi.org/10.5066/F7PR7TFT
https://doi.org/10.1016/j.isprsjprs.2017.08.008
https://www.pgc.umn.edu/data/arcticdem/
https://shop.swisstopo.admin.ch/en/products/height_models/alti3D
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12741.html
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V. Uncertainty on spatial averages - Methods
● Uncertainties can be reduced for spatially averaged elevation changes. For uncorrelated errors, this 

is the standard error of the mean. For correlated errors (most cases), this requires to know spatial 
correlation lengths (Rolstad et al., 2009).

● Most studies assume a single correlation length (~500 m for KH-9, e.g. Pieczonka et al. (2013)).
● Using semivariograms (see next slide), calculated on stable terrain from 48 DEMs, we estimate 

these correlation lengths. Following Rolstad et al. (2009), we calculate the analytical standard error 
σΔh, function of the averaging distance L and spatial correlation length a1 and sill c1 :

● The results are compared to an empirical estimate, by calculating the standard deviation of 
average values over “random” patches in stable terrain (e.g. Miles et al. (2018))

(Equation shown here for a single 
correlation length, but can be 
summed up for several lengths)
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V. Uncertainty on spatial averages – Results (1/2)
● The emprical semivariogram (grey dots, left figure) is best fit with 3 spherical models of spatial 

correlation length ~0.5, 4 and 60 km (dotted lines). These lengths correspond to typical “noise” 
or blunders seen in the elevation change maps (see next slide).

● The analytical error (right figure, orange) agrees well with the empirical error (grey and black 
lines). Estimates with single correlation length of 500 m (resp. 70 km) would under- (resp. 
over) estimate the uncertainty.



 Dehecq et al. #ShareEGU20  | p. 13

V. Uncertainty on spatial averages – Results (2/2)

Examples of typical errors seen in KH9-
derived elevation changes 

(here over flat terrain in Alaska)
● Short scale (~500 m → <1 mm on film) 

noise, probably related to the film grain
● Medium scale (~3-4 km → ~3-4 mm) 

artifacts, such as  bumps, likely caused by 
dust grain (found at exact same position in 
consecutive images)

● Large tiling artifacts. Assumed to be 
caused by the scanner, since the size 
correspond to the size of the CCD sensor of 
the USGS scanner (Leica DSW700)

● Residuals caused by uncertainties in 
camera intrinsics parameters, especially 
near edges

These types of artifacts are expected 
for other scanned analog images
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VI. Applications – Glacier volume changes (1/2)
● We test the ability to derive accurate glacier volume changes over the Swiss Alps, where 

good reference elevation exist both for 1980 (“Hist 1980” aerial DEM) and 2019 (SwissAlti).
● Good agreement between the reference and KH9-derived elevation changes, both in term of spatial 

and altitudinal distribution, even in snow-covered high altitude areas with little image contrast. 
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VI. Applications – Glacier volume changes (2/2)

Application at regional scale - Example of the glaciers in Alaska
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VI. Applications – Landslides

KH-9 DEMs and orthophotos have a large array of 
applications related to the observation of surface 
changes at multi-decadal scales.
● In a recent study, we observed the onset of several 

mega landslides in South Peru, by comparing 
KH-9 (1978) and Pléiades (2016) DEMs.

● We demonstrated that the landslides have been 
triggered by the development of vast 
irrigation programs in and after the 1950s.

● The DEMs were used to estimate vertical changes, 
while ortophotos were used to estimate the 
horizontal displacement.

● The long time span is key in providing surface 
conditions prior and after the changes.

More details in the associated paper:
Lacroix et al., 2020 (doi:10.1038/s41561-019-0500-x)

https://doi.org/10.1038/s41561-019-0500-x
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Conclusions

● We developed an automated workflow to generate 24 m resolution DEMs from analog KH-9 
images, covering nearly all land surfaces from 1973 to 1980.

● The workflow is able to refine camera extrisinc (position/orientation) and intrinsic (focal length, 
lens distortion) without the use of manual control points, based on an external DEM only.

● The code will be made publicly available in a few months time.
● The retrieved elevation was validated against ancilary data set and the (68% interval) uncertainty 

estimated to less than 5 m vertically.
● However, we raise particular attention to large scale correlated biases associated with such 

analog imagery, that must be taken into account when deriving volume changes.
● The KH-9 archive provides a unique opportunity to study topographic changes over decadal scales 

with potential applications in glaciology, seismology, natural hazards or geomorphology.
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