

Bayesian uncertainty quantification of spatio-temporal trends in soil organic carbon using INLA and SPDE

<u>Nicolas P.A. Saby¹</u>, Thomas Opitz², Bifeng Hu^{1,3}, Blandine Lemercier⁴ and Hocine Bourennane³

1: Unité Infosol, INRAe, Orléans, France

2: Unité BioSp, INRAe, Avignon, France

3: Unité UR Sols , INRAe, Orléans France

4: UMR SAS, Institut Agro, Rennes, France

Soil properties vary in space and time dimension

How to make accurate predictions with associated uncertainty ?

INRA

Motivations

- 1. Perfect data do not exist
 - 1. Measurement errors and missing values in time series at observation sites
 - 2. Standard approaches need clean and complete data for reliable inferences
- 2. The estimation of space-varying regression coefficients (in particular *space-varying time trends*) is challenging : optimal spatial smoothness of the estimated trend surfaces?
- Precise assessment of estimation and prediction uncertainty is challenging with multi-step approaches (*e.g., Regression/Machine Learning + kriging of residuals*)
- 4. Space-time covariance matrices become more and more intractable with increasing dimension

Objectives

- Develop a fully Bayesian estimation framework based on
 - the integrated nested Laplace approximation (INLA),
 - combined with the stochastic partial differential equation (SPDE) approach to provide numerically convenient representations of Gaussian processes over continuous space.
- Joint estimation of all model components and predictions, including smoothness parameters (Issues 2, 3, 4), for any sampling design (Issue 1)

Statistical framework for space-time variation

$$Y(s,t) = \beta_0 + \sum_i \beta_i z_i(s) + W_0(s) + (\tilde{t} - 0.5)W_1(s) + \sum_{l=1}^K B_l(t)W_l(s) + \varepsilon(s,t)$$

(relevant smoothing hyperparameters are indicated *in italic*)

- β_i : covariate coefficients for fixed effects and categorical effects $z_i(s)$ (*precision*)
- $W_0(s)$: Space-varying intercept (*range*, *precision*)
- $W_1(s)$: Space-varying slope of time trend with normalized time \tilde{t} (*range, precision*)
- $W_l(s)$: Space-time residual process (*range*, *precision*)
- $\varepsilon(s, t)$ *i.i.d* process (precision)
- Here, responses Y(s,t) are supposed to be Gaussian, but other distributions are possible

The French Soil test database

National project for soil monitoring of agricultural soils in the framework of the GIS Sol

- Data Characteristics:
 - Georeferencing: imprecise municipality
 - **Sampling:** no control on the strategy sampling year
 - Standardized analytical procedures for the selected laboratories
 - Available soil parameters:
 - Particle size analysis
 - Organic C and total N, pH, CEC
 - Macronutrients (P K Ca Mg)
 - Micronutrients
 - Basic information on land use

Saby et al, 2017, Soil Use and Management, https://doi.org/10.1111/sum.12369

ersion 3, Copyright © 2014 – 220 INRA, Tous droits réservés Crédits – Administration

 L'INRA dècline toute responsabilité quant à l'utilisation qui pourrait être faite des données. Ces dernières sont fournies telles q soin apporté à la constitution de la base, il se peut que des erreurs existent. Les responsables de la BDAT remercient par avance leur mentionneraient d'éventuelles incohérences. Ils tiennent également à attirer l'attention des utilisateurs sur le manque de p réalisées à une échelle supérieure au 1/250000ème à l'aide des données fournies.

Carbon content in agricultural topsoils of Brittany region

- > 38 000 data between 1990 and 2014
- Very noisy data

Results

Uncertainty of categorical effects

$$Y(s,t) = \beta_0 + \sum_i \beta_i z_i(s) + W_0(s) + (\tilde{t} - 0.5)W_1(s) + \sum_{l=1}^K B_l(t)W_l(s) + \varepsilon(s,t)$$

- Mean and 95 % credibility interval
- Uncertainty estimates are based on Posterior distributions

Uncertainty of the hyper parameters

Inference on space-varying linear time trend

Uncertainty of spatio temporal maps

Median of posterior distributions of the Carbon content for the year 2000

95% quantile

Discussion

- Fast computations within INLA thanks to the sparse matrix computation library PARDISO <u>https://pardiso-project.org/r-inla/</u>
- Explore model comparison using CRPS to improve assessment of prediction uncertainty (*calibration* and *sharpness*)
- By default, INLA provides univariate posterior distributions of hyperparameters, latent variables (*e.g.*, W0(s), W1(s)) and fitted values
- Posterior simulation allows obtaining posterior distributions for other quantities that combine several latent variables (interpolation in space and time, regional aggregation and trends, etc.)

Thank you !

GIS Sol, INRAe, Chinese council

