

Jaap Nienhuis and Roderik van de Wal, Utrecht University

j.h.nienhuis@uu.nl, r.s.w.vandewal@uu.nl

global river delta change in response to sea-level rise in the 21st century

- SLR inundation models predict significant coastal flooding/land loss under all SLR scenarios (e.g. Kulp & Straus, Nat Comm 2019, or the WRI aqueduct <u>www.wri.org/aqueduct</u>)
- 2. However, observations from 1985-2015 show net delta land gain despite SLR (Nienhuis et al., Nature 2020)
- 3. Here we try to reconcile this difference by allowing for coastal sedimentation: we provide a morphodynamic prediction for future land loss from SLR that is validated by observations

- 1. We apply a simple and tested morphodynamic model
- 2. It schematizes a delta by its cross-section and compares the incoming sediment flux to the SLR rate
- The calculated shoreline movement and delta width together result in delta land loss or land gain

- 1. We apply our cross-section model to all 10,000 river deltas.
- 2. We validate our model using results from 1985-2015 vs. LandSat observations of delta change for all 10,000 deltas.

3. We find reasonable agreement when applied on a global scale. This is one of the major benefits of doing this analysis globally vs. for individual deltas.

- 1. We find that sediment supply change, subsidence, and climatechange driven SLR are important in future delta change
- 2. Under RCP8.5 by the end of the century, deltas will lose 900 km²/yr.
- 3. Cumulative from 2000-2100, RCP8.5 results in 35,000 km² delta land loss equivalent to about 4% of global delta area.

