

Solar wind interaction with the lunar surface: **Observation of energetic neutral atoms on the lunar surface by the** Advanced Small Analyzer for Neutrals instrument on the Yutu-2 rover of Chang'E-4

Martin Wieser^(1,*), Stanislav Barabash⁽¹⁾, Xiao-dong Wang⁽¹⁾, Aibing Zhang⁽²⁾, Chi Wang⁽²⁾ and Wenjing Wang⁽²⁾ ⁽¹⁾ Swedish Institute of Space Physics Kiruna, Kiruna, Sweden, ⁽²⁾ National Space Science Center, Chinese Academy of Sciences, Beijing, China **doi:**10.5194/egusphere-egu2020-9199 (*) wieser@irf.se

INTRODUCTION

- Remote sensing shows about 1/5th of solar wind protons impinging on the lunar surface are reflected back to space as energetic neutral atoms.
- The Advanced Small Analyzer for Neutrals (ASAN) on the Yutu-2 rover of Chang'E-4 is the first instrument measuring energetic neutral atoms directly *in-situ* on the lunar surface.
- ASAN is a single angular pixel instrument with mass and energy resolution and makes use of the mobility of the Yutu-2 rover to investigate different patches of undisturbed lunar regolith under different solar wind illumination conditions and observation angles.
- Chang'E-4 landed on 3 January 2019 in the Von Kármán crater on the lunar farside. ASAN science operations began on January 31, 2019.

INSTRUMENTATION

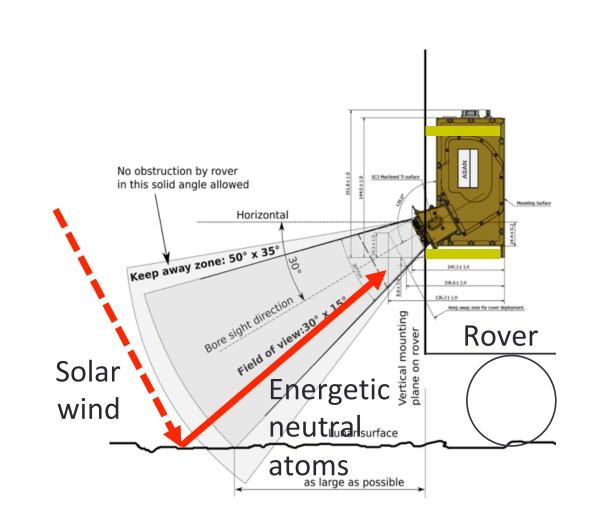
The Advanced Small Analyzer for Neutrals (ASAN)

- Compact, surface interaction based time-of-flight instrument
- 8th member of the SWIM family (Wieser and Barabash, JGR, 2016)
- Adapted for operation on Yutu-2 in collaboration between the **Swedish Institute of Space Physics (IRF)** and with the **National Space Science Center, Chinese Academy of Sciences.**

Detects	Energetic neutral atoms (ENA) Positive ions	
Energy range	10 eV — 10 keV	
Energy resolution	ENA: $\Delta E/E = 16\% - 100\%$ lons: $\Delta E/E = 7\%$	
Mass resolution	ENA: H, O, heavier atoms lons: m/q = 1, 2, 4, 8, 16, >32	
Time resolution	4 s	
Mass	787 g, w DPU, w/o harness	
Bus voltage	28 V (adjustable)	
Power	3.4 W (7 W for cover opening)	
Dimension	108 * 151 * 100 (mm³)	
Data rate	<1000 bps (CCSDS)	
Operation	-25°C ~ +50°C	
Actuator	Cover, one-time open	
Operation	Continuous, >=1 year	

ASAN flight instrument Wieser et al., SSRv (2020), doi:10.1007/s11214-020-00691-w

OBJECTIVES


High-level science objectives

- What is the microphysics of the solar wind-surface interaction processes?
- *How is the lunar exosphere formed* and maintained?

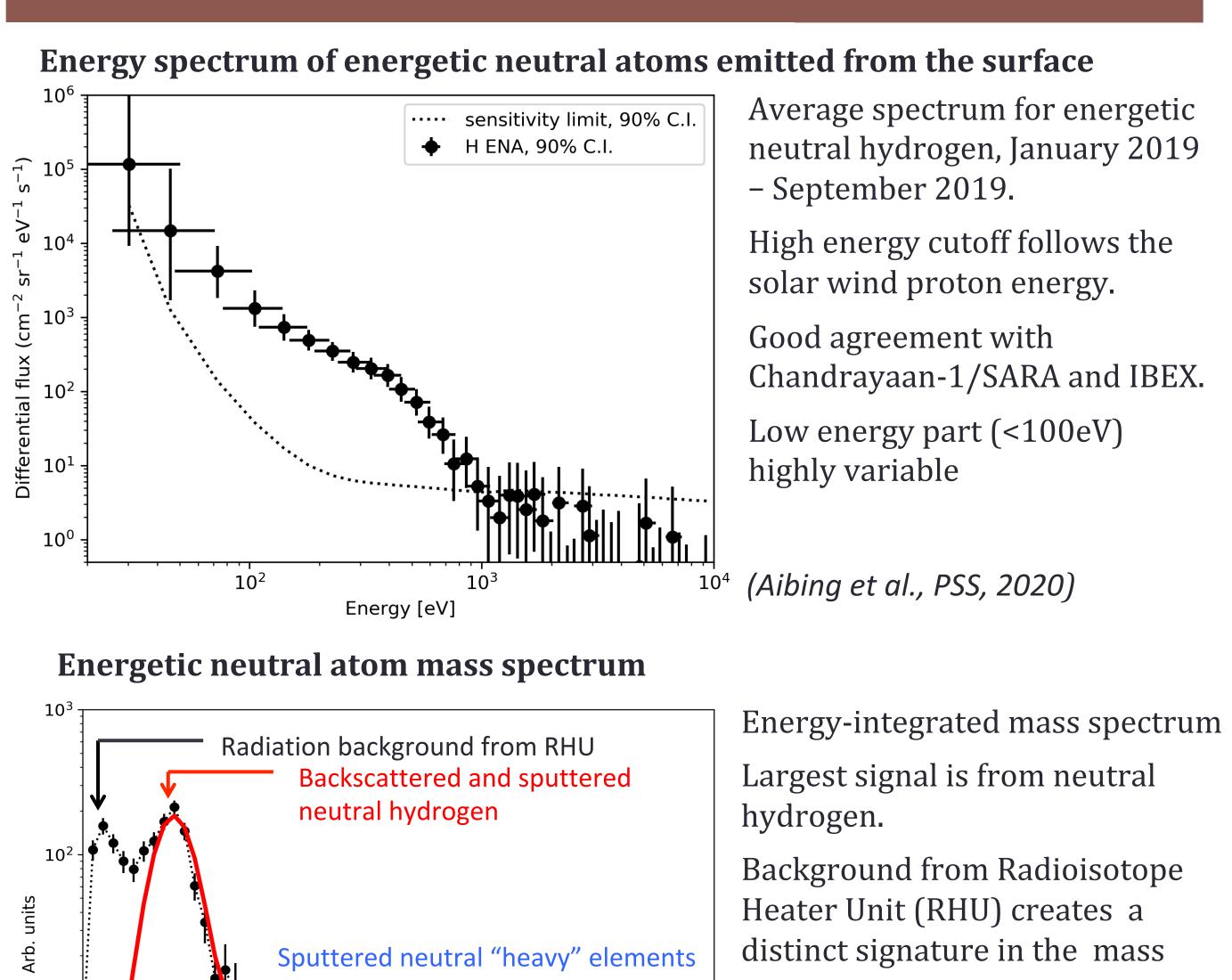
Derived measurement objectives

- Determine *in-situ* energy distribution, mass composition and angular emission properties of energetic neutral atoms emitted from the lunar regolith.
- Investigate dependences on solar wind parameters, local time and micro topography.

OBSERVATION GEOMETRY

INSTRUMENT STATUS

Status end of January 2020

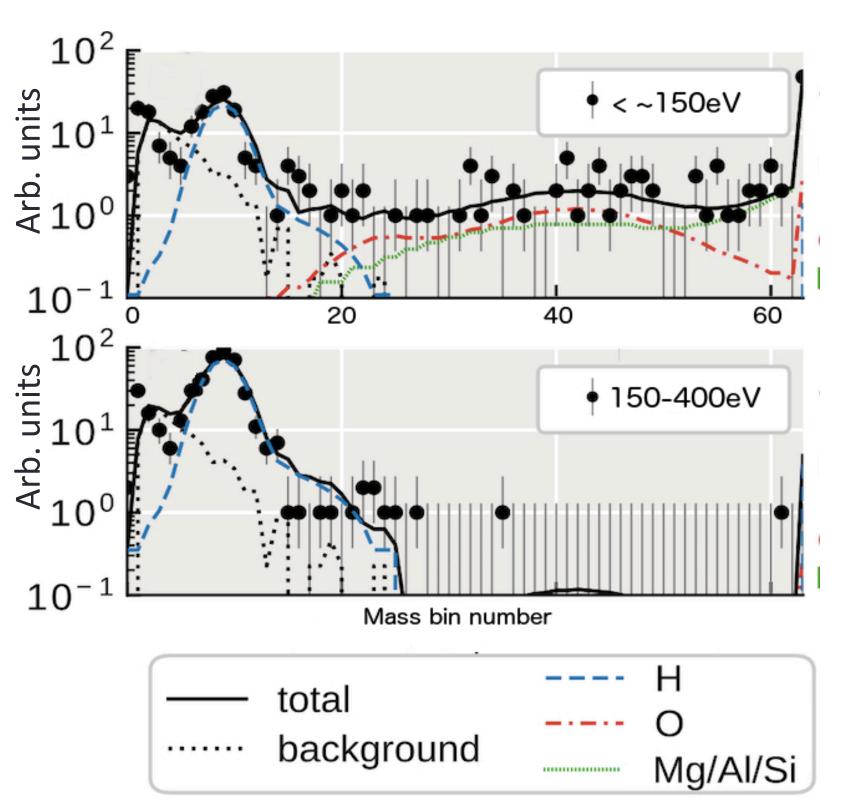

- ASAN is in excellent health with no visible degradation.
- Typically measurements are performed during local morning and evening due to thermal constraints.
- A total of 49h of data accumulated in 41 individual measurement sessions between January 2019 and January 2020, and counting.

RESULTS

10¹

10

Internal ASAN mass bin numbe


spectrum.

(Wieser et al. in preparation)

RESULTS (CONT.)

Mass composition with fitted ASAN mass response curves

Angular scattering function

- Angular scattering profiles appear compatible with models derived from SARA/Chandrayaan-1 measurements (*Vorburger et al., JGR, 2013*).
- More coverage with individual ASAN measurements is needed to constrain these models.
- Removal of solar wind shadowing effects by the rover itself requires modeling.

Estimated lunar hydrogen albedo

ASAN (1 st May 2019 site):	0.13 (+0.20/-0.04)	Most likely value, median = 0.28
Chandrayaan-1/SARA:	0.19 (+0.02/-0.03)	(Futaana et al., GRL, 2012)
IBEX:	0.11 (+/-0.06)	(Saul et al. , PSS, 2013)

SUMMARY

- lunar surface itself.
- **Energy** spectra for energetic neutral hydrogen agree well with previous remote measurements, although the low energy part < 100eV is highly variable.
- Both backscattered and sputtered energetic neutral atom components identified.
- Hydrogen albedo comparable with large-scale or global values.

- "Heavy" elements observed at low energies only, confirming their origin from surface sputtering.
- Hydrogen mostly originates from backscattering.
- Separation of background, oxygen and Si-group elements requires modeling.

The lunar hydrogen albedo for (E>28eV) of the surface at the Von Kármán crater is comparable to large-scale or global averages reported elsewhere, although exact values are somewhat sensitive to the integration methods used:

First measurement of energetic neutral atom emissions directly **on the**

This work is distributed under the Creative Commons Attribution 4.0 License.