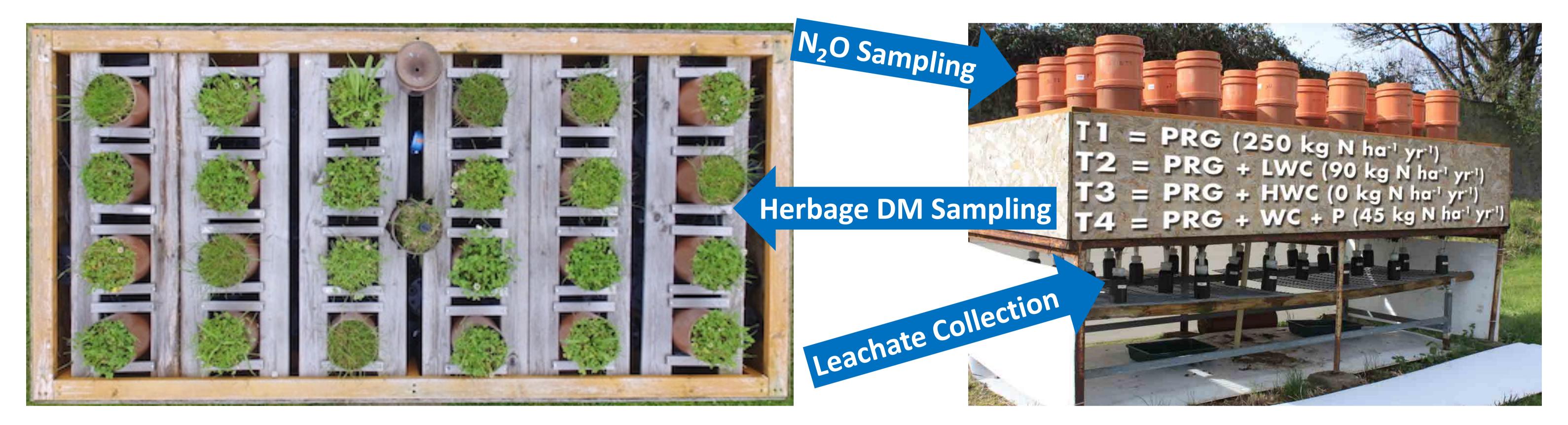
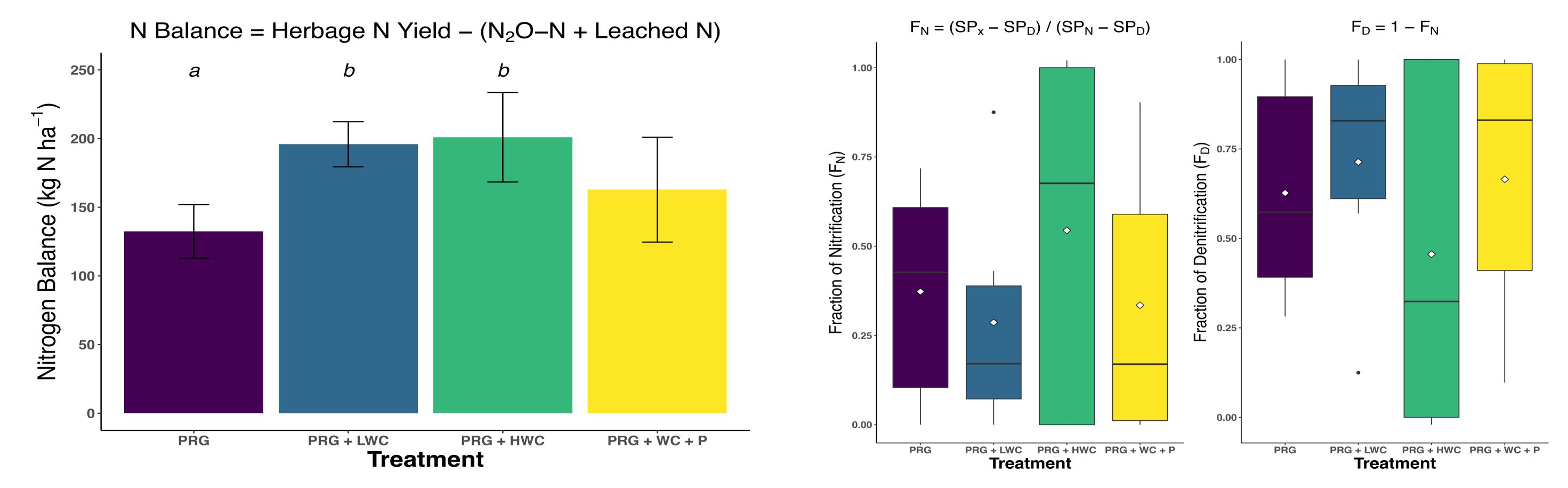
©Authors. All rights reserved.

Analysis of N₂O emissions and isotopomers to understand nitrogen cycling associated with multispecies grassland swards at a lysimeter scale.


<u>Conor Bracken</u>^{a, b, c}, Gary Lanigan^c, Karl Richards^c, Christoph Müller^{b, d, e}, Saoirse Tracy^{a, b}, Paul Murphy^{a, b} ^aUCD School of Agriculture and Food Science; ^bUCD Earth Institute; ^cTeagasc, Environmental Research Center, Johnstown Castle; ^dInstitute of Plant Ecology, Justus-Liebig University; ^eUCD School of Biology and Environmental Science

Introduction


 N_2O is a potent GHG associated with N fertiliser inputs and management practices.¹ N_2O isotopomers are useful indicators of N_2O source pathways.^{2,3} Minimising N losses is key to improving the efficiency and sustainability of grassland agriculture systems.⁴ Multispecies swards have been considered as an option to reduce N fertiliser inputs, maintain yields and mitigate N losses.

Materials and Methods

Completely randomised block design. 4 treatments: Perennial ryegrass only (PRG, 250 kg N ha⁻¹ yr⁻¹), PRG + low white clover (PRG+LWC, 90 kg N ha⁻¹ yr⁻¹), PRG + high WC (PRG+HWC, 0 kg N ha⁻¹ yr⁻¹) and PRG + WC + ribwort plantain (PRG+WC+P, 45 kg N ha⁻¹ yr⁻¹).

Results and Conclusions

Nitrogen balances were significantly greater from PRG+LWC and PRG+HWC than PRG only. Both required less annual fertiliser N to sustain DM production. There were no significant

differences in cumulative N_2O emissions or total leached N among treatments. No significant difference in the fraction of nitrification (F_N) or denitrification (F_D) was detected between treatments around peak N_2O fluxes linked to fertiliser application.

References

- ¹Liang et al., 2016. Multivariate regulation of soil CO₂ and N₂O pulse emissions from agricultural soils. Global Change Biology, 22: 1286-98.
- ²Friedman and Bigeleisen, 1950. Oxygen and nitrogen isotope effects in the decomposition of ammonium nitrate. The Journal of Chemical Physics, 18: 1325-1331.
- ³Toyoda and Yoshida, 1999. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Analytical Chemistry, 71: 4711-4718.
- ⁴Hoekstra et al., 2020. Scenarios to limit environmental nitrogen losses from dairy expansion. Science of the Total Environment, 707: 1 15.

UCD School of Agriculture and Food Science

UCD Earth Institute

Better understand today's world. Inform solutions for tomorrow.

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Acknowledgements

The authors would like to thank the Teagasc Walsh Scholarship and the UCD Seed Funding Schemes for financially supporting this work. Many thanks to all those who contributed technical advice and support to this work.