European Geosciences Union EGU-2020

## EXPERIMENTAL STUDY ON LIQUID SLOSHING DYNAMICS WITH SINGLE POROUS VERTICAL BAFFLE IN A SWAY EXCITED SHIP

Sahaj K. V. Research Scholar

and

**T. Nasar** Associate Professo

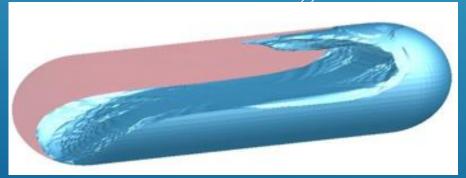
Department of Applied Mechanics and Hydraulics National Institute of Technology Karnataka, Surathkar, Mangaluru, Karnataka India - 575025





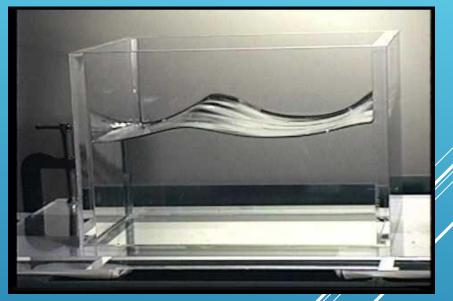


# **INTRODUCTION**

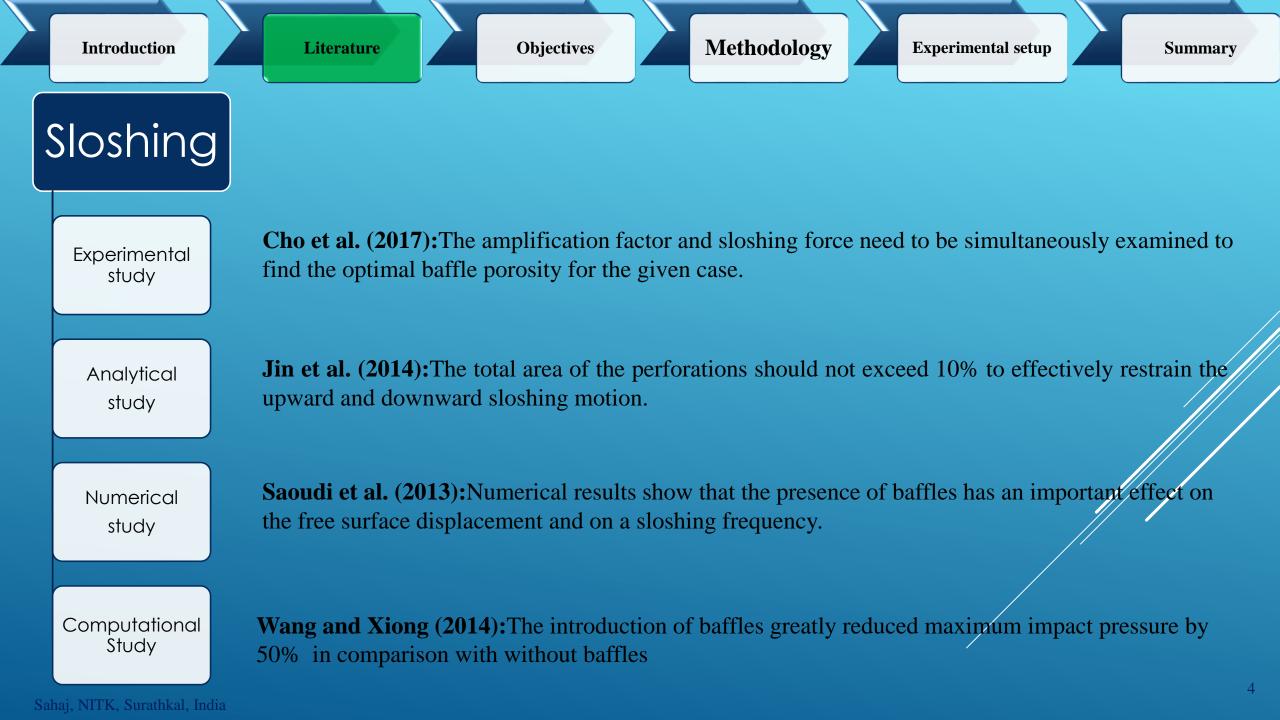

Storage tanks are commonly used in water distribution systems, and in industries or storing liquids

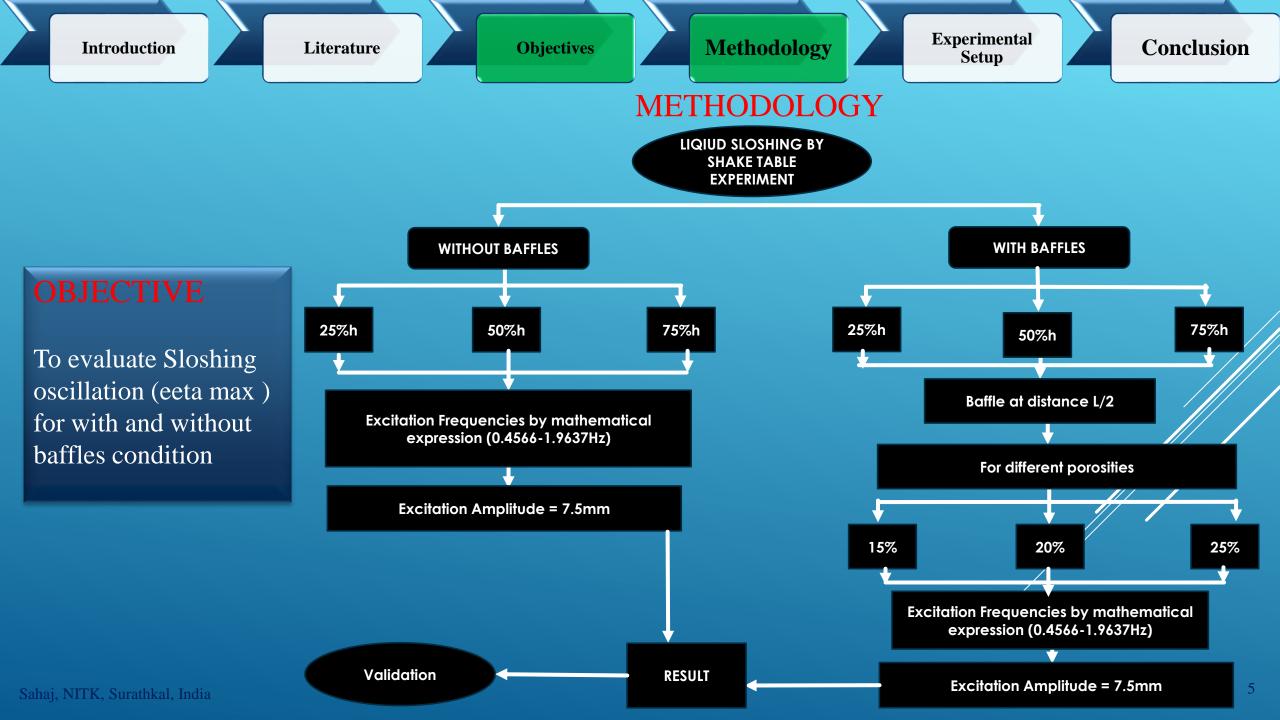
> Effect of seismic activities causing hydrodynamic forces on tanks

> Sloshing : "any movement of the free liquid surface inside other object."


 $\succ$  Dynamics of liquid can interact with container to alter the system dynamic significantly/

> The liquid must have a free surface to constitute a slosh dynamic problem

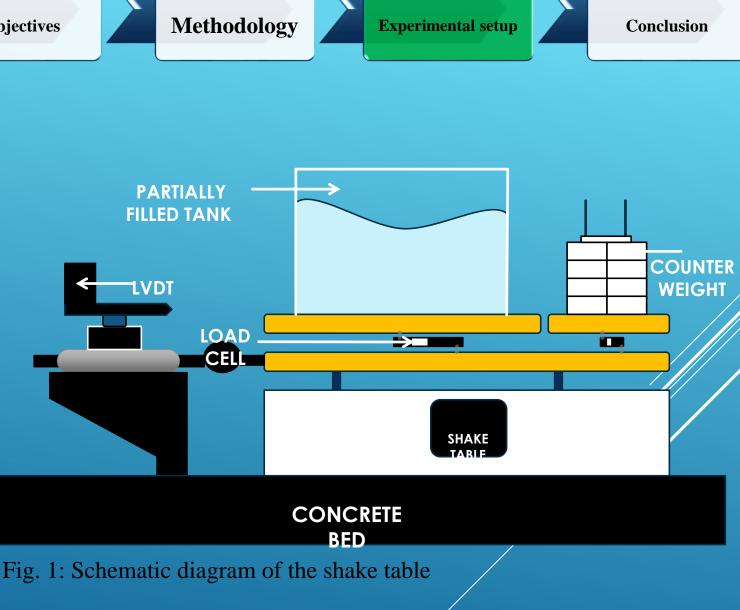



- The dynamic behaviour of a free liquid surface depends on the excitation type and its frequency
- Sloshing Behaviour: Periodic, impulsive, sinusoidal and random, lateral, planar, non-planar, rotational, parametric, symmetric, asymmetric, pitching/yaw or combinational effects
- > Analyse the sloshing dynamics
- Application of sloshing for different fill levels in a tank



Source: Feng Z C (1997) "Transition to Travelling Wayes from Standing Wayes in a Rectangular Container Subjected to Horizontal Excitations"








#### **EXPERIMENTAL SETUP**

- Rectangular tank of size  $1.0m (l) \ge 0.4m$ (b) X 0.65m (h) is prepared which is made up of acrylic plate of 12mm thickness.
- A level of water is maintained to match with natural frequency of the main system. A liquid tank is positioned on the shake table such that during the sway excitations, the sloshing oscillations occurs along the longitudinal axis.
- Two resistive type gauges are used to measure liquid oscillation at the ends inside the tank. The water in between the electrodes closes the circuit and during free surface oscillation, the change in resistance gives the measurement of sloshing oscillation.





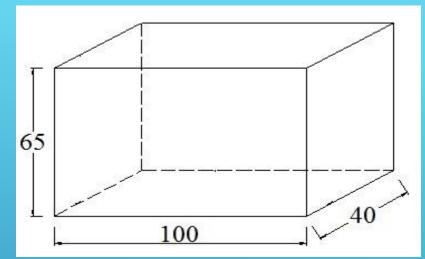
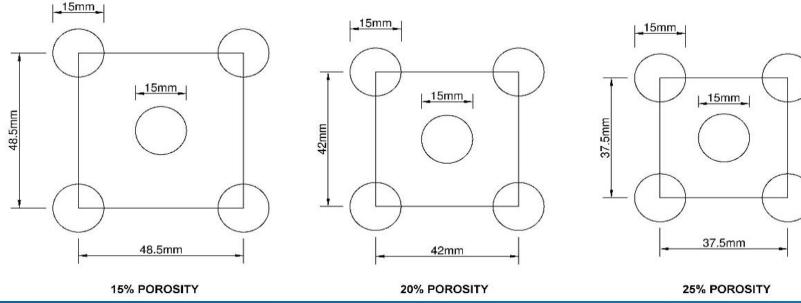




Fig. 3: All dimensions are in cm

Fig. 2: Liquid sloshing tank with liquid fill condition fitting on to the shake table.



Sahaj, NITK, Surathkal, India

Fig. 4. Size of pores in baffles wall for different staggered position of 15%, 20% and 25% porosities

 Table 1: Natural frequencies for modes in Shake Table Experiments

| Mode (n)        | Frequency (Hz)    |                   |                 | Frequency ratio f / f <sub>1</sub> |                 |               | Amplitude<br>(mm) |
|-----------------|-------------------|-------------------|-----------------|------------------------------------|-----------------|---------------|-------------------|
|                 | $h_{s}/l = 0.163$ | $h_{s}/l = 0.325$ | $h_{s}/l=0.488$ | $h_s/l = 0.163$                    | $h_s/l = 0.325$ | $h_s/l=0.488$ |                   |
|                 | 0.4566            | 0.4566            | 0.4566          | 0.75359                            | 0.588781        | 0.54150853    |                   |
|                 | 0.4939            | 0.5363            | 0.5533          | 0.81515                            | 0.691554        | 0.65619070    |                   |
|                 | 0.5312            | 0.6160            | 0.6499          | 0.87671                            | 0.794326        | 0.77075426    |                   |
|                 | 0.5685            | 0.6957            | 0.7466          | 0.93827                            | 0.897099        | 0.88543643    |                   |
| 1 <sup>st</sup> | 0.6059            | 0.7755            | 0.8432          | 1                                  | 1               | 1             |                   |
|                 | 0.7695            | 0.9266            | 0.9778          | 1.27001                            | 1.194842        | 1.15962998    |                   |
|                 | 0.9331            | 1.0777            | 1.1122          | 1.54002                            | 1.389684        | 1.31902277    |                   |
| 2 <sup>nd</sup> | 1.0967            | 1.2287            | 1.2468          | 1.81003                            | 1.584397        | 1.47865275    | 7.5               |
|                 | 1.2179            | 1.3281            | 1.3413          | 2.01007                            | 1.712573        | 1.59072580    |                   |
|                 | 1.3391            | 1.4275            | 1.4358          | 2.2101                             | 1.840748        | 1.70279886    |                   |
| 3 <sup>rd</sup> | 1.4604            | 1.5270            | 1.5302          | 2.4103                             | 1.969052        | 1.81475332    |                   |
|                 | 1.5528            | 1.6069            | 1.6091          | 2.5628                             | 2.072083        | 1.90832542    |                   |
|                 | 1.6452            | 1.6868            | 1.6880          | 2.7153                             | 2.175113        | 2.00189753    |                   |
| 4 <sup>th</sup> | 1.7376            | 1.7666            | 1.7671          | 2.8678                             | 2.278014        | 2.09570683    |                   |
|                 | 1.8130            | 1.8363            | 1.8366          | 2.99224                            | 2.367892        | 2.17813092    |                   |
|                 | 1.8884            | 1.9060            | 1.9061          | 3.11669                            | 2.457769        | 2.26055502    |                   |
| 5 <sup>th</sup> | 1.9637            | 1.9757            | 1.9757          | 3.24096                            | 2.547518        | 2.34309772    |                   |

### **RESULTS AND DISCUSSION**

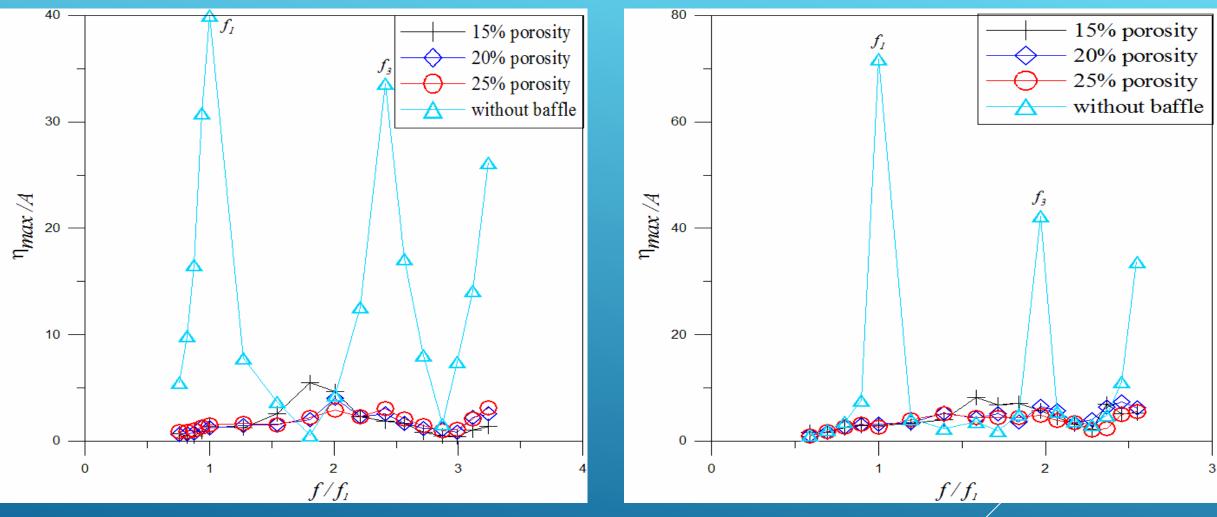



Fig. 5: Variation of  $\eta_{\text{max}}$  / A with and without porous baffle with various frequencies ratio for  $h_s/l = 0.163$ .

Fig. 6: Variation of  $\eta_{\text{max}}$  / A with and without porous baffle with various frequencies ratio for  $h_s/l = 0.325$ .

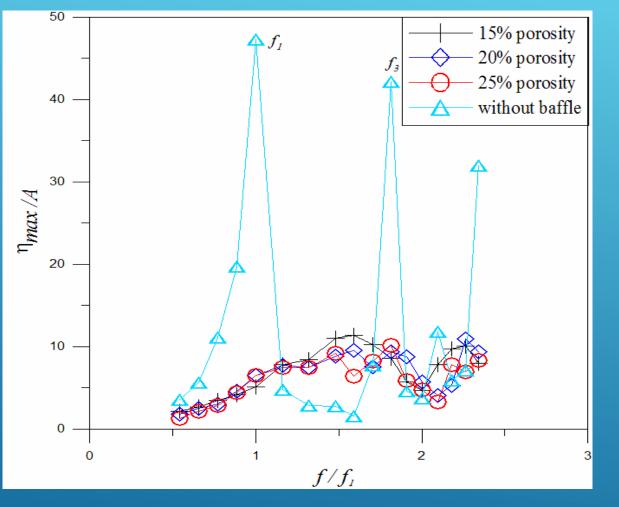



Fig. 7: Variation of  $\eta_{\text{max}}$  / A with and without porous baffle with various frequencies ratio for  $h_s/l = 0.488$ .

By considering without baffle case higher response are observed in the order of  $f = f_1$ ,  $f = f_3$  and  $f = f_5$  i.e. at odd mode sloshing frequencies.

Maximum sloshing response is observed at  $f = f_3$  for all the three porous conditions and  $f = f_1$  which is for un baffled condition for all the water cases.

Maximum sloshing response elevation at  $f = f_1$  is completely supressed by all porous baffle conditions. Though sloshing response is observed to be increased at  $f = f_3$  and slightly decreases at  $f = f_5$  due to the existence of porous baffle

## CONCLUSION

It can be confirmed that the first mode of the natural frequency of the fluid in a rectangular tank is distinctly the resonant frequency, based on the results for the free surface elevations for different frequency ratios.

Increasing the excitation amplitudes and frequency increases the pressure response for both baffled and un baffled condition.

Baffles reduce natural sloshing frequencies and change sloshing mode shapes of free surface in a variety of ways. The degree of reduction and variation is enhanced with the growth of baffle lengths and heights.

It can be concluded that baffles significantly reduce the fluid motion and consequently the force response.

#### REFERENCES

- Cho IH, Choi JS, Kim MH (2017) Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle. Ocean Engg. 138:2334. doi:10.1016/j.oceaneng.2017.04.005
- Tsukasa Nakayama, Kyuichiro Washizus (1980) Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation. International journal for numerical methods in engg 15:1207-1220. doi:10.1002/nme.1620150808
- Wang W, Xiong YP (2014) Minimising the sloshing impact in membrane LNG tank using a baffle. University of Southampton. ISSN: 2311-9020; ISBN: 978-972-752-165-4
- Jin H, Liu Y, Li HJ (2014) Experimental study on sloshing in a tank with an inner horizontal perforated plate. Ocean Engg 82:75-84
- Neves MAS, Fonfach JM, Manderbacka T (2016) Numerical sloshing simulations: Comparison between lagrangian and lumped mass models applied to two compartments with mass transfer. Ocean Engg 114:168-184. doi:10.1016/j.oceaneng.2016.01.023
- Saoudi Z, Hafsia Z, Maalel K (2013) Dumping effects of submerged vertical baffles and slat screen on forced sloshing motion. J Water Resource. Hydraulics. Engg. 2:51-60
- Xue MA, Zheng J, Lin P, Yuan X (2017) Experimental study on vertical baffles of different configurations in suppressing sloshing pressure. Ocean Engg.136:178-189. doi:10.1016/j.oceaneng.2017.03.031
- Ibrahim RA (2005) Liquid sloshing dynamics: theory and applications. Cambridge University. doi:10.1017/CBO9780511536656

