FACULTY OF MATHEMATICS, INFORMATICS AND NATURAL SCIENCES

New pathways for high-resolution weather radar products in the Hamburg metropolitan region

Finn Burgemeister, Tobias Sebastian Finn, Tobias Machnitzki, Marco Clemens, and Felix Ament finn.burgemeister@uni-hamburg.de

> EGU2020: Sharing Geoscience Online HS7.8 - Precipitation and Urban Hydrology 04.05.2020

FACULTY OF MATHEMATICS, INFORMATICS AND NATURAL SCIENCES

New pathways for high-resolution weather radar products in the Hamburg metropolitan region

<u>Keywords</u>: Weather Radar; Urban Hydrology; X-band; Observation Network; Single Polarization; Small Scale Precipitation Structure; High Spatial and Temporal Scale, Attenuation Correction; Deep Learning Approach; Neural Network, Error Minimization, Python Package; CliCCS – Climate, Climatic Change, and Society

04.05.2020 | Urban Weather Radar / Finn Burgemeister / finn.burgemeister@uni-hamburg.de

Focus on Networked Observations in Urban Area

- X-band weather radars
 - spacious high-resolution precipitation measurements
 - supplement nationwide C-band radars
 - HHG radar operational since 2013
 - (ALT radar will start mid 2020)
- (K-band) Micro Rain Radars
 - vertical profiles
 - as calibration reference in relevant height levels
 - calibration of MRRs with rain gauges

Low cost local area weather radar

HHG radar in center of Hamburg (100 m rooftop)

- single-polarized X-band weather radar
 - modified ship navigation radar with parabolic dish
 - time resolution 30 s
 - range resolution 60 m
 - sampling resolution in azimuth 1°
 - maximum range 20 km
 - low elevation angle ~4°
 - high sample of 12 rotations include ~67 pulses per 1° and 30 s

Further tech. details Lengfeld et. al (2014)

Higher temporal and spatial resolution

• valuable information on the small-scale structure of rain events in urban region (this example shows a tornado in a rain event)

Single polarization and small wavelength is challenging issue

Initial disturbed weather radar observation:

- strong attenuation
- background noise (induced by the atmosphere or the internal electronic)
- variety of non-meteorological echoes (increased in urban environment)

How to derive a undisturbed product?

(00

How to derive a undisturbed product?

¹pylawr – A python package for operational weather radar processing Burgemeister, F., T. S. Finn, M. Schaper, Y. Büchau, M. Clemens, and F. Ament, 2020, in prep.

04.05.2020 | Urban Weather Radar / Finn Burgemeister, Universität Hamburg

Dynamic estimation of background noise

(CC

Dynamic estimation of non-meteorological echoes

multiple applications of Gradient-based filters + Optical filters + Time-dependent filters

Interpolation of missing values

Adaptive Kriging including time-dependent update of parameters

Attenuation correction

- iterative correction over the range integrated from *wradlib* (Heistermann, Jacobi and Pfaff, 2013)
- correction by less attenuated C-band radars using isotonic regression of ratios (Lengfeld et al., 2016)
- at this example: extreme rain rates probably because of hail

Outlook: Convolutional Neural Network for Radar Data

further research needed for explicit application

Summary

- high-resolution X-band weather radars supplements the nationwide, coarser C-band observations within the greater urban area of Hamburg, Germany
- We are capable to **minimize the errors of single-polarized X-band weather radar** observations with our python package *pylawr* combining well-established algorithms:
 - Background noise + Non-meteorological echoes + Attenuation correction
- neural network can process radar observations resulting in images, free of noise and nonmeteorological echoes
 - trained neural network is significant faster than *pylawr*
 - NN results in better structure of rain field, but *pylawr* results in more accurate values
 - suggest combination of NN and *pylawr* (example NN for detection of non-meteorological echoes)
- recent research focuses on uncertainty of precipitation estimation from weather radar observations oriented on urban hydrology within the Cluster of Excellence CliCCS – Climate, Climatic Change, and Society and Universität Hamburg