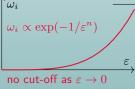
The strange instability of the equatorial Kelvin wave

Stephen Griffiths

Department of Applied Maths, University of Leeds S.D.Griffiths@leeds.ac.uk

Overview

- Linear instability of shear flows (inviscid; rotating, stratified).
- ► Consider a (simple) basic state u = U(y)x̂; seek small disturbances ∝ exp i(kx - ωt), and find ω = ω(k, flow parameters).
- ► Typically, instability appears at some critical non-zero parameter.
- ▶ Place an **equatorial Kelvin wave** in a shear flow, the strength of which is measured by a nondimensional parameter ε . There is strange behaviour when $\varepsilon \ll 1$, discovered by John Boyd. We are motivated by (and to some extent follow) a series of his papers:

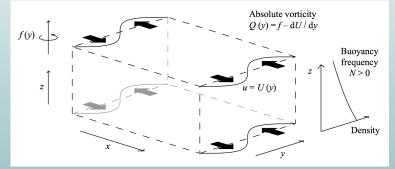


- Boyd (1981): Sturm-Liouville eigenproblems with an interior pole (J. Math. Phys.)
- Boyd and Christidis (1982): Low wavenumber instability on the equatorial beta-plane (J. Atmos. Sci.)
- Boyd & Natarov (1998): A Sturm-Liouville eigenproblem of the fourth kind:

a critical latitude with equatorial trapping (Studies in App. Math.)

Natarov & Boyd (2001): Beyond-all-orders instability in the equatorial Kelvin wave (Dyn. Atmos. Oceans)

(Cartesian) Equations of motion



With $\boldsymbol{u} = (u, v, w)$ in (x, y, z) and $D/Dt = \partial/\partial t + \boldsymbol{u} \cdot \nabla$,

$$\frac{Du}{Dt} - fv = -\frac{1}{\overline{\rho}}\frac{\partial p}{\partial x}, \quad \frac{Dv}{Dt} + fu = -\frac{1}{\overline{\rho}}\frac{\partial p}{\partial y},$$

$$\frac{Dw}{Dt} = -\frac{\partial p}{\partial z} - g\rho, \quad \frac{D\rho}{Dt} = 0, \quad \nabla \cdot \boldsymbol{u} = 0.$$
Boussinesq
Hydrostatic

esq

At rest, density $\rho = \overline{\rho} + \rho_0(z)$, and $N^2 = -g\rho'_0/\overline{\rho}$ (constant).

Linear disturbances for uniform shear

• Take $U(y) = \Lambda y$, $f = \beta y$, and disturbances $\propto e^{ik(x-ct)+imz}$.

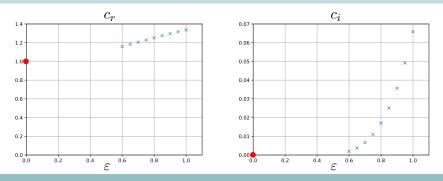
▶ Nondimensionalise lengths by $L_d = \sqrt{c_{gw}/\beta}$, time by L_d/c_{gw} , (u, v) by c_{gw} and $p/\overline{\rho}$ by c_{gw}^2 , where $c_{gw} = \frac{N}{m}$ (gravity-wave speed):

$$\begin{split} & (\varepsilon y - c)u + (\varepsilon - y)v + p = 0, \ \text{(1a)} \\ & -k^2(\varepsilon y - c)v + yu + p' = 0, \ \text{(1b)} \\ & (\varepsilon y - c)p + u + v' = 0, \ \text{(1c)} \end{split} \quad \text{where } \varepsilon = \left(\frac{\Lambda^2}{\beta c_{\text{gw}}}\right)^{1/2} \lesssim 1, \\ & k = L_d k_{\text{dim}} \lesssim 1. \end{split}$$

- When $k \ll 1$ (cf. Gill, 1980s), there is only one parameter, ε .
- ▶ In atmosphere, typically $\Lambda \approx 10 \,\mathrm{m \, s^{-1}}/1000 \,\mathrm{km} \approx 10^{-5} \,\mathrm{s^{-1}}$. With $c_{\mathrm{gw}} = 30 \,\mathrm{m \, s^{-1}}$, find $\varepsilon \approx 0.4$ (but smaller for deeper modes).
- The $\varepsilon = 0$ Kelvin wave has v = 0, $u = p \propto e^{-y^2/2}$, and c = 1.
- Seek solutions with $c \to 1$ as $\varepsilon \to 0$, and $c_i > 0$ (unstable: $k \in \mathbb{R}^+$).

Numerical solutions: standard shooting

Solve on [-10, 10], with $v(\pm 10) = 0$. Shoot to equator with 4th-order Runge Kutta, and $\Delta y = 0.005$. Secant iteration.

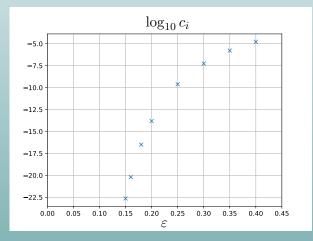


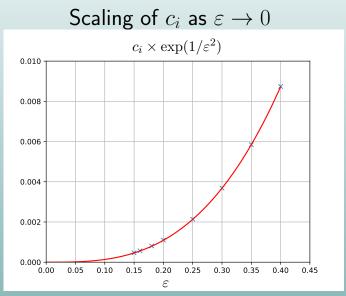
Here • denotes the $\varepsilon = 0$ Kelvin wave.

But the scheme breaks down as ε decreases. Since $\text{Im}(c) = c_i \ll 1$, there is a near singularity in the ODEs (at $y = c/\varepsilon \approx c_r/\varepsilon \approx 1/\varepsilon$). Note: already $\text{Im}(c) = c_i = 0.00196$ at $\varepsilon = 0.6$.

Numerical solutions: high-precision shooting

- Shoot in complex plane, detouring below singularity at $y \approx 1/\varepsilon$ (cf. Boyd).
- Use arithmetic accurate to 25 decimal places (mpmath), and other tricks.
- Secant method converges after 5 iterations, in less than 1 minute (on a laptop).





The red line is $0.14\varepsilon^3$, so $c_i \approx 0.14\varepsilon^3 \exp(-1/\varepsilon^2)$ as $\varepsilon \to 0$. Natarov and Boyd suggested $c_i \propto \text{constant} \times \exp(-1/\varepsilon^2)$ as $\varepsilon \to 0$, but the growth is yet weaker!

Outlook

- How can this instablity be explained?
- ▶ Possible to make progress using asymptotics, but hard to extract c_i , which is exponentially small as $\varepsilon \to 0$ (and no insight!).
- Boyd showed importance of critical latitude for instability to exist.
- Mechanism probably involves two-way interaction between equatorial wave and critical layer:
 - Kelvin wave in shear has weak latitudinal flow v. This induces $v\propto \varepsilon^2\exp(-\varepsilon^2/2)$ in critical layer.
 - This induces highly localised vorticity perturbations (approximately quasi-geostrophic, with very short deformation radius of $O(\varepsilon)$).
 - ► These induce flows that feedback upon (remote) equatorial Kelvin wave, reducing effect by another factor of $\exp(-\varepsilon^2/2)$ (?).
- Possible similarities to wind-wave instability mechanism proposed by Carpenter et al. (2017, J. Phys. Oceanogr.), which involves a surface water wave interacting with a critical layer in the air above.