

Sensitivity analysis of MOHID-Land model. Calibration and validation of Ulla river watershed.

Ana R. Oliveira¹, Tiago B. Ramos¹, Lucian Simionesei¹, Lígia Pinto¹, Ramiro Neves¹

¹ MARETEC-LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa Email: <u>anaramosoliveira@tecnico.ulisboa.pt</u>

This study aims to calibrate and validate the channel flow in Ulla river watershed (Galicia, Spain) using MOHID-Land model considering a sensitivity analysis of some parameters and user's options that can affect model results.

MOHID-Land model

Ana R. Oliveira

Case study (original set up)

Impact of a grid resolution of 1 km and a source MDT with 5 m resolution.

	Q _{mean} [m ³ /s]				
%Exceedence	0-10	10-40	40-60	60-90	90-100
500 m	0.89	3.82	12.45	75.69	241.25
1 km	0.03	0.29	1.51	14.77	70.45
DTM=5 m	0.97	4.07	13.05	78.57	244.44

Sensitivity analysis of MOHID-Land model. Calibration and validation of Ulla river watershed.

 $(\mathbf{\hat{l}})$

Impact of soil geometry with decreasing of layers thickness (LayThick) (maintaining soil depth) and increasing of soil depth.

	Q _{mean} [m³/s]						
%Exceedence	0-10	10-40	40-60	60-90	90-100		
500 m	0.89	3.82	12.45	75.69	241.25		
LayThick -50%	1.09	3.76	12.12	78.09	242.66		
SoilDepth +100%	3.46	8.35	19.03	75.44	225.73		

Impact of increasing vertical (Ksat) hydraulic conductivity and horizontal (Kh) hydraulic conductivity.

	Q _{mean} [m ³ /s]					
%Exceedence	0-10	10-40	40-60	60-90	90-100	v (m3/s)
500 m	0.89	3.82	12.45	75.69	241.25	Flov
Kh = 20 (instead of 10)	1.16	4.15	13.04	67.42	336.44	
Ksat x10	1.92	11.02	31.47	76.5	175.93	_

Sensitivity analysis of MOHID-Land model. Calibration and validation of Ulla river watershed.

U LISBOA

(†)

Ana R. Oliveira

impact of cha		coefficient	t value.		hanning	
	Q _{mean} [m ³ /s]					
%Exceedence	0-10	10-40	40-60	60-90	90-100	
500 m	0.89	3.82	12.45	75.69	241.25	
ManCha +50%	0.98	4.05	13.31	73.32	186.74	
ManSur +50%	0.89	3.83	12.56	77.96	254.78	

Impact of channel (ManCha) and surface (ManSur) Manning

Sensitivity analysis of MOHID-Land model. Calibration and validation of Ulla river watershed. Ana R. Oliveira

 $(\mathbf{\hat{l}})$

Impact of deactivation of porous media processes using Curve Number method (PM0 + CN) and deactivation of vegetation processes (Veg0).

 (\mathbf{i})

	Q _{mean} [m³/s]				
%Exceedence	0-10	10-40	40-60	60-90	90-100
500 m	0.89	3.82	12.45	75.69	241.25
PM0 + CN	0.13	1.10	4.63	32.57	152.43
PM0 + CN -25%	0.03	0.38	1.66	10.01	75.89
Veg0	14.52	20.39	34.94	116.56	269.1

Calibration and validation

Sensitivity analysis of MOHID-Land model. Calibration and validation of Ulla river watershed.

JI TÉCNICO LISBOA

 $(\mathbf{\hat{H}})$

Ana R. Oliveira

Acknowledgement

This research was supported by Directorate-General for European Civil Protection and Humanitarian Aid Operations through project Hazrunoff (UCPM-783208).

References

 Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store
(CDS) https://cds.climate.copernicus.eu/cdsapp#1/home/last.access.op

(CDS), https://cds.climate.copernicus.eu/cdsapp#!/home (last access on 19/12/2019).

- Copernicus Land Monitoring Service EU-DEM (2017), https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoringservice-eu-dem (last access on 12/12/2019).
- 3. Tóth B., Weynants M., Pásztor L., Hengl T., 2017. 3D soil hydraulic database of Europe at 250 m resolution. Hydrological Processes. 2017;31:2662–2666. https://doi.org/10.1002/hyp.11203.
- 4. Copernicus Land Monitoring Service, 2019. Corine Land Cover 2012, https://land.copernicus.eu/paneuropean/corine-land-cover/clc-2012 (last accessed on 03/07/2018).

