

Quantitative reconstruction of Holocene vegetation cover in Flanders, Belgium - a study based on pollen-records from alluvial floodplains

Renske Hoevers, Nils Broothaerts & Gert Verstraeten

Flemish floodplains

- Early/Middle Holocene: most floodplains were stable environments with limited floodplain aggradation, resulting in peat growth
- Late Holocene: floodplains changed completely towards single channel meandering rivers with overbank deposits, impeding peat accumulation
- Transformation in floodplain geoecology is largely a result of increasing anthropogenic impact, hence timing can differ a few thousand years between different river valleys

Late Holocene

Previous research

- Land-use intensity needs to cross a certain threshold to transform of the fluvial system
- Based on qualitative and semiquantitative methods this threshold, and the timing at which it is crossed, could not be detected
- Therefore, **quantitative assessment** of the resilience of floodplain environments to regional land-use changes is needed

- - Sediment input in the floodplain

Human impact

Pilot REVEALS-based reconstruction Dijle catchment

- Based on six floodplain pollen records
- No modern pollen data available
 - Simulations of regional vegetation compared with historical land cover maps for validation

Taxon group	Pollen proportions	REVEALS Mean (S.E.)	Observed vegetation
Trees	0.25	0.05 (0.02)	0.16
Grasses	0.46	0.43 (0.11)	0.34
Cereals	0.29	0.52 (0.10)	0.50

Table 1: Comparison of the average pollen proportions for the Dijle catchment around 1775 AD, the REVEALS-based vegetation reconstruction, and the observed vegetation proportions based on the 1778 AD land cover maps for the area

Pilot REVEALS-based reconstruction Dijle catchment

- During the Neolithic Period and the start of the Bronze Age: low share of cereals
 - Could be related to local scale human impact and limited connectivity to the fluvial system
- Decrease in forest cover from the Bronze Age onwards, accompanied by increase in the proportion of cereals
- Grasses are abundantly present during all time periods, can be attributed to an overrepresentation as they are part of the natural local floodplain vegetation

Next steps

• Look for **pollen type parameters** (PPE & FSP) that might be more appropriate for the study area

• Test effect of more pollen data:

• Database of 32 pollen records in NE Belgium

• Selected sites differ in soil properties, topographies, and histories of human impact in their catchments

→ uncover regional differences in land-cover evolution

Questions or comments? renske.hoevers@kuleuven.be

https://www.futurefloodplains.be/

References

- Broothaerts N, Verstraeten G, Kasse C, Bohncke S, Notebaert B, Vandenberghe J (2014). From natural to human-dominated floodplain geoecology – A Holocene perspective for the Dijle catchment, Belgium. Anthropocene 8: 46-58.
- Broothaerts N, Verstraeten G, Kasse C, Bohncke S, Notebaert B, Vandenberghe J (2014). Reconstruction and semiquantification of human impact in the Dijle catchment, central Belgium: a palynological and statistical approach. *Quaternary Science Reviews* 102: 96-110.
- Mazier F, Gaillard MJ, Kunes P, Sugita S, Trondman AK and Brostrom A (2012). Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. *Review of Palaeobotany and Palynology* 187: 38-49.
- Nielsen AB (2003). Pollen-based quantitative estimation of land cover-relationships between pollen sedimentation in lakes and land cover as seen on historical maps in Denmark AD 1800. Doctoral thesis, University of Copenhagen.
- Notebaert B, Verstraeten G, Ward P, Renssen H and Van Rompaey A (2011). Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. *Geomorphology* 126: 18-31.
- Sugita S (2007) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. *The Holocene* 17: 229-241.
- Theuerkauf M, Couwenberg J, Kuparinen A et al. (2016). A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. *Veget Hist Archaeobot* 25: 541–553.
- Theuerkauf M and Couwenberg J (2018). ROPES Reveals Past Land Cover and PPEs From Single Pollen Records. *Front. Earth Sci.* 6:14.