

Mediterranean Forecasting System

A baroclinic tidal forecasting model for the Mediterranean Sea - First validation results

Anna Chiara Goglio (1), Emanuela Clementi (1), Massimiliano Drudi (1), Alessandro Grandi (1), Rita Lecci(1), Valentina Agresti(2), Simona Masina (1), Giovanni Coppini(1), Nadia Pinardi (1,3)

[1] {CMCC: Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy };
 [2] {Ricerca sul Sistema Energetico - RSE S.p.A., Italy};
 [3] {Department of Physics and Astronomy, University of Bologna, Italy};

INTRODUCTION

In the framework of the Copernicus Marine Environment Monitoring Service (CMEMS) Mediterranean Analysis and Forecasting Physical System (MedFS), a specific modeling upgrade has been carried out by including the main lunisolar tides.

The first results of baroclinic tidal model experiments are presented together with their validation with respect to insitu and satellite data as well as comparing with available literature studies.

A.C. Goglio - May 2020

The Numerical Modeling System

Initial Conditions

WOA winter climatologies System initialization on Jan/2015

Boundary conditions

Atlantic: daily GLO-MFC AN/FCST (1/12°res.) Dardanelles: daily GLO-MFC AN/FCST (1/12°res.) & Maderich et al., 2015.

Land river runoff:

39 rivers discharge: $Q > 50m^3/s$ (climatological data)

Bathimetry

modified GEBCO 30arc-sec

Tidal Forcings

Atlantic boundary:

- FES2014 downscaled tidal elevations
- FES2014+TUGOm downscaled tidal velocities (http://sirocco.omp.obsmip.fr/ocean models/tugo)

Atmospheric Forcings

ECMWF 1/8° analysis fields time resolution 6 hrs:

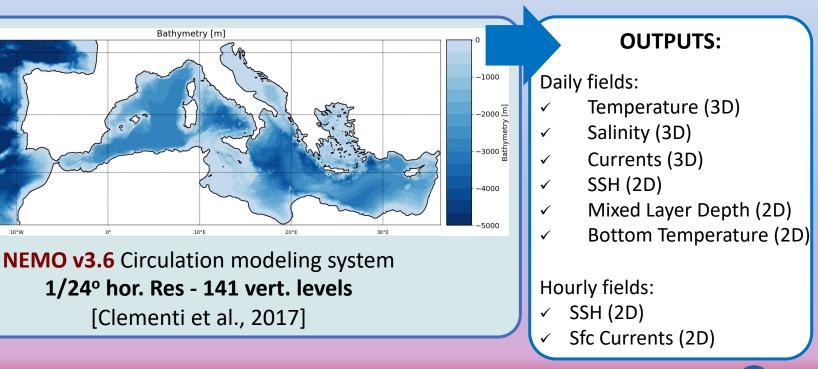
mean sea level pressure (MSLP)

cloud cover

 \geq

- 2m relative humidity
- 2m air temperature
- 10m zonal and meridional wind components

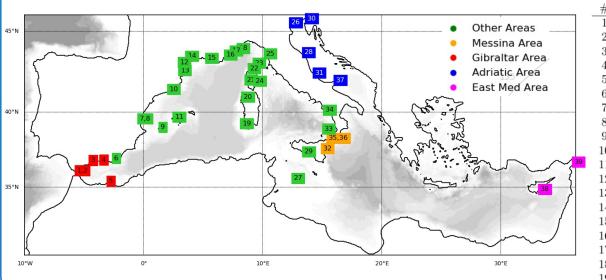
2 53


Bathymetry [m]

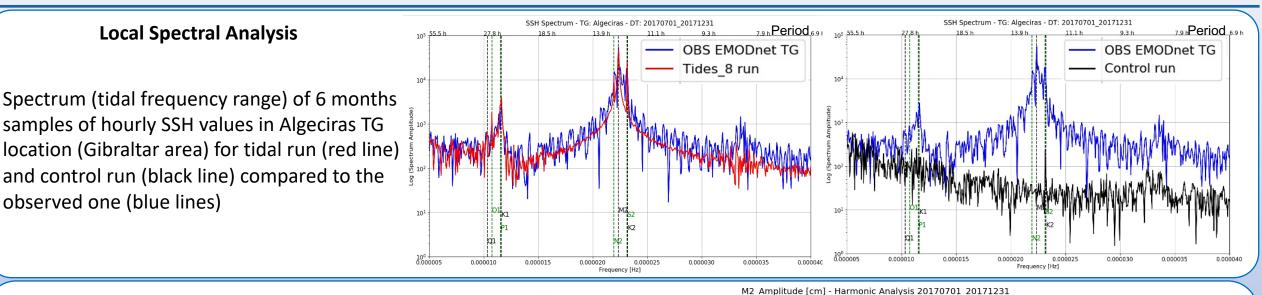
[Clementi et al., 2017]

Precipitation

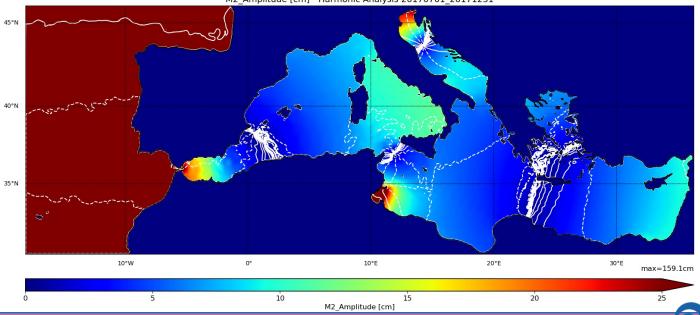
Parameterizations:


- Air-sea fluxes: MFS bulk formulae [Pettenuzzo et al. (2010)]
- Advection scheme for active tracers: mixed up-stream/MUSCL
- Vertical diffusion and viscosity terms: Function of the Richardson number as parameterized by Pacanowsky and Philander (1981)

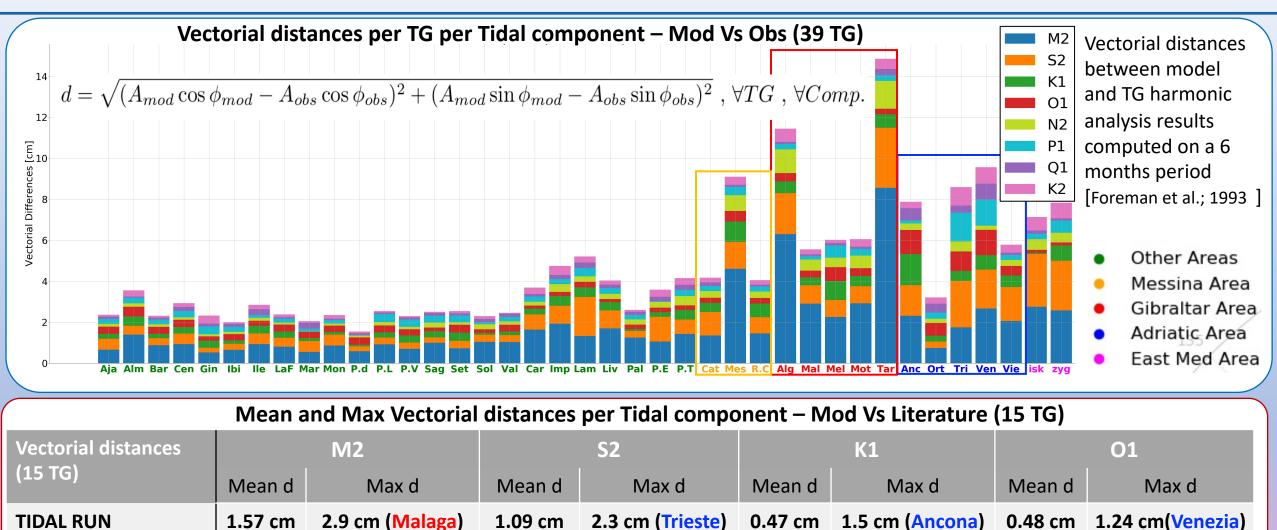
Run Settings and Validation Dataset


	Model Settings								
	Tidal potential (key_tides)	Tidal boundary forcings	Tidal components	Time integration scheme	Time filter	Time-step Internal /External		•	
Control run	X	Х	X	Forward	Boxcar over 2*nn_baro steps	240 s	2.4 s	2.5e-3 m^3/s^2	2015-2019
Tidal run	\checkmark	\checkmark	8 components: M2, S2, K1, O1, N2, Q1, K2, P1	Centered	Boxcar over nn_baro steps	120 s	2.0 s	0 m^3/s^2	2015-2019

Validation dataset: available Tide-Gauges


#	Name	Longitude	Latitude	Source	#	Name	Longitude	Latitude	Source
1	Tarifa	-5.60361	36.0064	EMODnet	20	Portotorres	8.40667	40.84722	ISPRA
2	Algeciras	-5.39833	36.1769	EMODnet	21	Ajaccio	8.76290	41.92270	EMODnet
3	Malaga	-4.417	36.712	EMODnet	22	IleRousse	8.93524	42.63960	EMODnet
4	Motril	-3.524	36.72	EMODnet	23	Centuri	9.34983	42.96578	EMODnet
5	Melilla	-2.918	35.291	EMODnet	24	Solenzara	9.40383	41.85686	EMODnet
6	Almeria	-2.478	36.83	EMODnet	25	Livorno	10.28806	43.54222	ISPRA
7	Valencia	-0.33	39.46	EMODnet	26	Venezia	12.42361	45.42361	ISPRA
8	Sagunto	-0.206	39.634	EMODnet	27	Lampedusa	12.61000	35.49139	ISPRA
9	Ibiza	1.44972	38.9111	EMODnet	28	Ancona	13.50833	43.62694	ISPRA
10	Barcelona	2.163	41.342	EMODnet	29	Portoempedocle	13.52528	37.28806	ISPRA
11	PalmadeMallorca	2.6375	39.5603	EMODnet	30	Trieste	13.76250	45.64389	ISPRA
12	PortLaNouvelle	3.06410	43.01471	EMODnet	31	Ortona	14.40667	42.35583	ISPRA
13	PortVendres	3.10730	42.52010	EMODnet	32	Catania	15.08472	37.49139	ISPRA
14	Sete	3.70170	43.40000	EMODnet	33	Ginostra	38.784	15.1933	EMODnet
15	Marseille	5.35370	43.27850	EMODnet	34	Palinuro	15.27111	40.01694	ISPRA
16	LaFigueirette	6.93377	43.48353	EMODnet	35	Messina	15.55917	38.18639	ISPRA
17	Monaco	7.42370	43.73300	EMODnet	36	Reggiocalabria	15.64389	38.11861	ISPRA
18	Imperia	8.01694	43.88111	ISPRA	37	Vieste	16.16944	41.89806	ISPRA
19	carloforte	8.30500	39.13556	ISPRA	38	Zygi	33.34023	34.72632	EMODnet
					39	Iskenderun	36.17676	36.59423	EMODnet

SSH Harmonic Analysis Validation


Areal Harmonic Analysis

Map of amplitude (colors) and phase (white solid contours for positive values and dashed for negative ones, interval 20°) of the main semidiurnal tidal component M2 computed on a 6 months period with the Salish-Sea-Project Fit method [https://salishsea-meopardocs.readthedocs.io/en/latest/tidalcurrents/tidal current tools.html]

SSH Harmonic Analysis Validation

3.9 cm (Trieste)

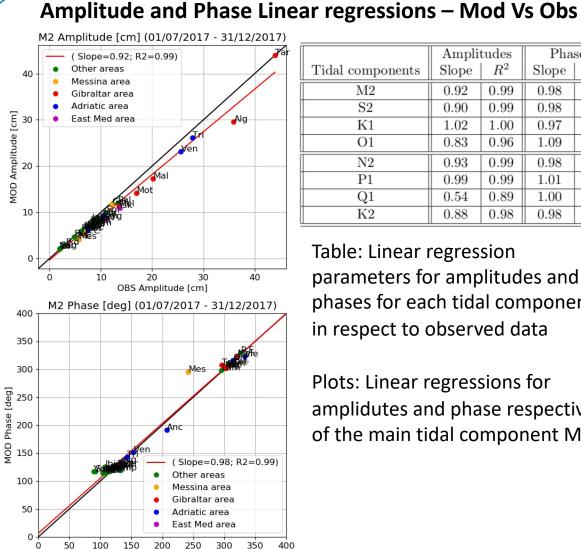
1.48 cm

4.5 cm (Trieste)

0.46 cm

1.21 cm

4.0 cm (Malaga)

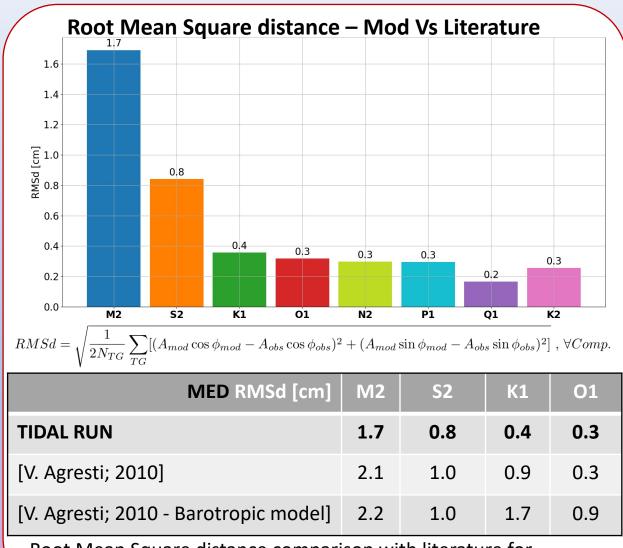

[Tsimplis et al.; 1995]

() () 1.75 cm

2

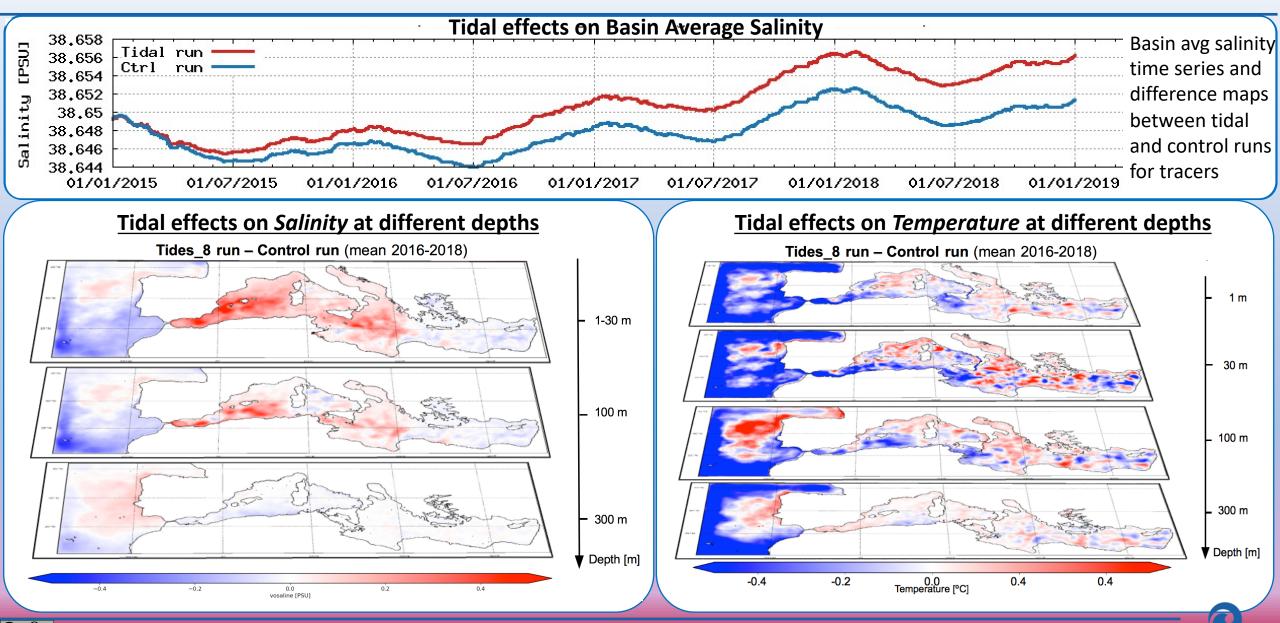
1.0 cm (Ancona)

SSH Harmonic Analysis Validation

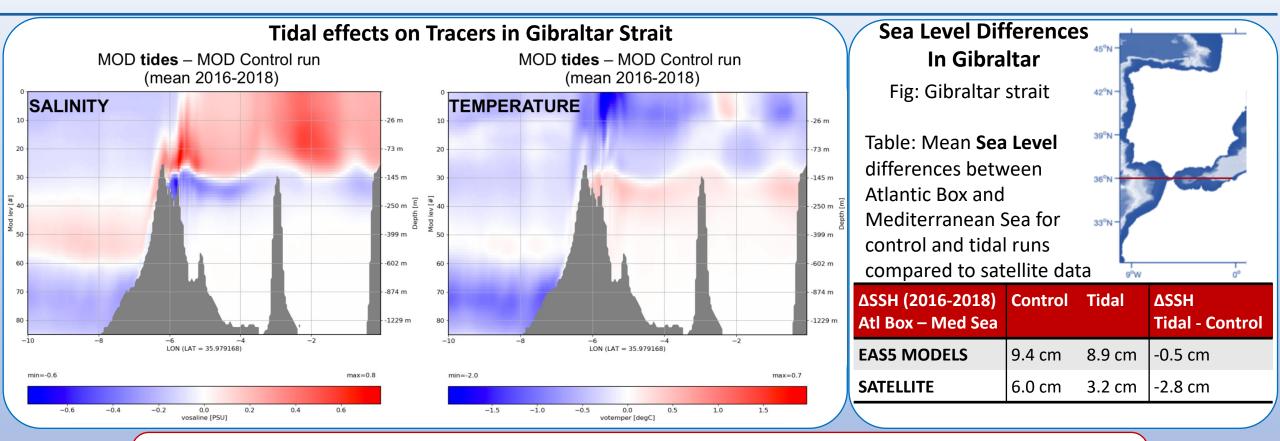


OBS Phase [deg]

_					
	Ampli	tudes	Phases		
Tidal components	Slope	R^2	Slope	R^2	
M2	0.92	0.99	0.98	0.99	
S2	0.90	0.99	0.98	0.99	
K1	1.02	1.00	0.97	0.99	
01	0.83	0.96	1.09	0.96	
N2	0.93	0.99	0.98	0.99	
P1	0.99	0.99	1.01	0.99	
Q1	0.54	0.89	1.00	0.84	
K2	0.88	0.98	0.98	0.99	

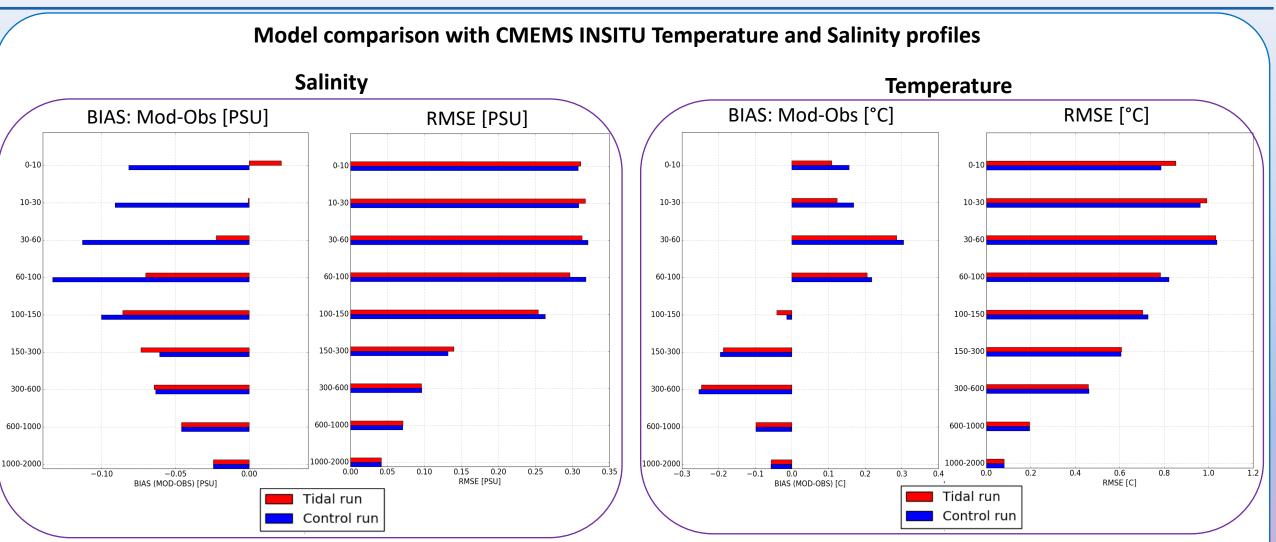

Table: Linear regression parameters for amplitudes and phases for each tidal component in respect to observed data

Plots: Linear regressions for amplidutes and phase respectively of the main tidal component M2



Root Mean Square distance comparison with literature for the first 4 tidal components computed on a 6 months period

Effects of Tides on Tracers


Effects of Tides on Gibraltar Strait

Gibraltar Transports:		Obs	EAS5 $(1/24^{\circ})$		Tidal simulations in Literature	
comparison between		Soto Navarro et al. 2015	Tidal run	Control run	V. Agresti 2018	
yearly tidal and	NET	$0.038 \pm 0.007 \; \mathrm{Sv}$	$0.037~{ m Sv}$	$0.032 { m Sv}$	0.041 Sv	
, ,	EASTWARD	$0.81 \pm 0.05 \; { m Sv}$	$0.99~\mathrm{Sv}$	$0.88 { m Sv}$	$0.95 { m Sv}$	
control model runs,	(incoming)					
data and literature	WESTWARD	$0.78 \pm 0.05 \; \text{Sv}$	$0.96 { m Sv}$	$0.85 { m Sv}$	0.91 Sv	
l	(outgoing)					

Skill Assessment of Model Runs

Bias (model outputs – observed values) and Root Mean Square Error with respect to the available INSITU data for salinity and temperature averaged on basin layers in the period 2016-2018 for tidal and control model runs

Conclusions and References

TIDAL MODEL VALIDATION RESULTS

- Model SSH shows a good agreement with tide-gauges data and literature in terms of amplitudes (mean amplitude bias lower than 1 cm) and phases (mean phase bias lower than 15°)
- Major differences are found in Gibraltar strait area and Adriatic Sea region where the tidal amplitudes are
 underestimated by the model (up to 6 cm) and in Messina strait area where the phase shows a higher bias (up to 90°)
- Tidal simulations show a saltier and colder upper layer with respect to the control run, expecially in Alboran Sea. The same behaviour is found in literature [Harzallah et al.; 2014] and does not improves significantly the model skills in terms of Estimate Accouracy Numbers, namely bias and rmse in respect to INSITU and satellite data
- Gibraltar net transport is close to the observed value but easward and westward components appears to be enhanced with respect to control run and measurements

REFERENCES

- Clementi et al. 2017; Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea
- Agresti 2018; Effect of tidal motion on the Mediterranean Sea general circulation
- **Tsimplis et al. 1995**; A two-dimensional tidal model for the Mediterranean Sea
- Soto-Navarro et al. 2015; Evaluation of regional ocean circulation models for the Mediterranean Sea at the Strait of Gibraltar: volume transport and thermohaline properties of the outflow
- * Foreman et al. 1993; A finite element model for tides and resonance along the north coast of British Columbia
- Harzallah et al. 2014; Mass exchange at the Strait of Gibraltar in response to tidal and lower frequency forcing as simulated by a Mediterranean Sea model

