DINCAE: A neural network to reconstruct missing data in satellite images

Alexander Barth¹, Aida Alvera-Azcárate¹, Matjaz Licer², and Jean-Marie Beckers¹

Paper: https://doi.org/10.5194/gmd-13-1609-2020

Video: <u>https://youtu.be/MJaEncQv0eE</u>

¹GeoHydrodynamics and Environment Research (GHER), University of Liège, Liège, Belgium

²National Institute of Biology, Marine Biology Station, Piran, Slovenia GHER, University of Liège, Belgium

in situ measurements

satellite measurements

Remote sensed data

- generally more accurate than models
- good spatial coverage

But:

- gaps due to e.g. clouds
- just the surface

no prediction (obviously)

Ideally:

- train a neural network on a large collection of full images
- reconstruct the missing data using the trained network

However: only very few images do not have any clouds

Application to SST

- Having long time series to train neural networks is quite important
- Advanced Very High Resolution Radiometer (AVHRR) dataset, from 1 April 1985 to 31 December 2009.
- One single image is composed by 112 x 112 grid points.
- **Cross-validation**: in the last 50 images we removed data according to the cloud mask of the first 50 images of the SST time series.
 - not used at all during either the training or the reconstruction phases
 - can be considered independent.
 - 106816 measurements have been withheld this way.

Study area

- the red rectangle: delimits the studied region
- color represents the bathymetry in meters
- the main currents: the Western Corsican Current (WCC), the Eastern Corsican Current (ECC) and the Northern Corsican Current (NC)

Bayes rule

- For Gaussian-distributed errors:
 - \circ prior: $N(x^f, \sigma^f)$
 - \circ observations: $N(y^o,\sigma^o)$
 - $\circ\;$ posterior: $N(x^a,\sigma^a)$
- Bayes:

$$p(x|y^o) = rac{p(x)p(y^o|x)}{p(y^o)}$$

• Mean and variance of posterior given by:

$$\sigma^{a-2} x^a = {\sigma^f}^{-2} x^f + {\sigma^o}^{-2} y^o \ \sigma^{a-2} = {\sigma^f}^{-2} + {\sigma^o}^{-2}$$

- Concept of information: $\sigma^{f^{-2}}x^{f}$ and $\sigma^{o^{-2}}y^{o}$

Auto-Encoder: used to efficiently compress/decompress data, by extracting main patterns of variability

- Similarity to EOFs

Convolutional: works on subsets of data, i.e. trains on local features

Missing data handled as data with different initial errors

- If missing, error variance (σ^2) tends to ∞

Input data:

- SST/ σ^2 (previous day, current day, following day)
- $1/\sigma^2$ (previous day, current day, following day)
- Longitude
- Latitude
- Time (cosine and sine of the year-day/365.25)

Training

- Partitioned into so-called mini-batches of 50 images
- The entire dataset are used multiple times (epoch)
- For every input image, more data points were masked (in addition to the cross-validation) by using a randomly chosen cloud mask during training (data set **augmentation**).
- The output of the neural network (for every single grid point i, j) is a Gaussian probability distribution function characterized by a mean \hat{y}_{ij} and a standard deviation $\hat{\sigma}_{ij}$.

$$J({\hat y}_{ij},{\hat\sigma}_{ij}) = rac{1}{2N}\sum_{ij}\left[\left(rac{y_{ij}-{\hat y}_{ij}}{{\hat\sigma}_{ij}}
ight)^2 + \log({\hat\sigma}_{ij}^2) + 2\log(\sqrt{2\pi})
ight]$$

- The first term: mean square error, but scaled by the estimated error standard deviation.
- The second term: penalizes any over-estimation of the error standard deviation.

Results

- RMS difference with cross-validation dataset as a function of iteration.
- The solid blue line represents the DINCAE reconstruction at different steps of the iterative minimization algorithm.
- The dashed cyan line is the DINEOF reconstruction and the dashed red line is the average

DINCAE reconstruction between epochs 200 and 1000.

Error estimation

- scatter plot of the true SST (withheld during crossvalidation) and the corresponding reconstructed SST.
- The color represents the estimated expected error standard deviation of the reconstruction.
- Low error values are expected to be closer to the dashed line.

- Reconstructed and cross-validation SST tend to cluster relatively well around the ideal dashed line.
- Typically the lower expected errors are found more often near the dashed line than at the edge of the cluster of points.

Error estimation

 Scaled errors are computed as the difference between the reconstructed SST and the actual measured SST (withheld during cross-validation) divided by the expected standard deviation error.

Example reconstruction with DINCAE and DINEOF for the date 2009-10-13

Example reconstruction with some artefacts for the date 2009-09-29

Independent validation

Comparison with the independent cross-validation data and the dependent data used for training (in °C)

	RMS	CRMS	bias
DINEOF	1.1676	1.1102	-0.3616
DINCAE	1.1362	1.0879	-0.3278

Comparison with the World Ocean Database for SST grid points covered by clouds

Variability

Standard deviation computed around the seasonal average

Conclusions

- Practical way to handle missing data in satellite images for neural networks
- Measured data divided by its expected error variance. Missing data are thus treated as data with an infinitely large error variance.
- The cost function of the neural network is chosen such that the network provides the reconstruction but also the confidence of the reconstruction error
- Reconstruction method **DINCAE compared favourably** to the widely used DINEOF reconstruction method which is based on a truncated EOF analysis
- The expected error for the reconstruction reflects well the **areas covered by the satellite measurements** as well as the areas with more intrinsic variability (like meanders of the Northern Current). The expected error predicted by the neural network provides a good indication of the accuracy of the reconstruction.
- The variability of the DINCAE reconstruction matched the variability of the original data relatively well.
- Code: <u>https://github.com/gher-ulg/DINCAE</u>
- Paper: Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: <u>DINCAE</u> <u>1.0: a convolutional neural network with error estimates to reconstruct</u> <u>sea surface temperature satellite observations</u>, Geosci. Model Dev., 2020.