

Calibrating drydowns

Identifying and optimising Soil Surface Moisture drydowns in the ORCHIDEE land-surface model

Nina Raoult, Catherine Ottlé, Philippe Peylin, Vladislav Bastrikov, Pascal Maugis...

EGU - HS6.3: Remote sensing of soil moisture - 6 May 2020

Soil Moisture in ORCHIDEE

- 3 hydric budgets for soil columns associated to vegetation
- Weight average of the 3 SM variables
- 11 layer
 discretization for
 the soil column

In-situ sites

- ISMN sites within the footprint of FLUXNET tower
- FLUXNET provides accurate forcing data and flux data (GPP/LE) for evaluation.

Definition of drydowns

Soil Moisture (**9**) Precipitation

- Due to large biases
 in SM, focus on
 temporal dynamics
- Measure of soil moisture memory
- τ is the metric of interest

Local example

Overall trends

- Generally, the model dries out faster than the observation
- Too small sample of sites to draw conclusions about vegetation, soil texture or climate

Calibration

- Using Opt_τ, for all sites, at least half of the τ values improve
- Opt_τ outperforms
 Opt_fullSSM in
 improving
 drydowns

Opt_t - calibration using τ values **Opt_fullSSM** - using whole bias-corrected SSM timeseries

Effect on other fluxes

- Little to no change
 when using Opt_τ
- More significant deterioration of fit when using Opt_fullSSM

Future Perspectives

Submit manuscript by the end of the month:

Raoult, N., et al. (2020), *Evaluating and Optimising Surface Soil Moisture drydowns in the ORCHIDEE land-surface model,* Journal of Hydrometeorology

- Use satellite data
 - Investigate global trends
 - > Perform global calibration of soil moisture retrievals
- Simultaneous global calibration of soil moisture with other data streams
 - > NDVI or SIF in
 - Land surface temperature