Exploring the cloud water adjustment in deep marine stratocumulus decks

A. Possner, R. Eastman, F. Bender, F. Glassmeier

Estimates of cloud adjustment:

1) <u>Natural Laboratories:</u> cloud adjustment likely small (Malavelle et al. 2017) with moderate (< 30%) offset to Towmey forcing (Toll et al. 2017, Toll et al. 2019, Diamond et al 2020).

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

 $(\mathbf{\hat{H}})$

(cc)

MOPGA German Research Initiative

Federal Ministry

of Education and Research

1

Exploring the cloud water adjustment in deep marine stratocumulus decks

A. Possner, R. Eastman, F. Bender, F. Glassmeier

Estimates of cloud adjustment:

- 1) <u>Natural Laboratories:</u> cloud adjustment likely small (Malavelle et al. 2017) with moderate (< 30%) offset to Towmey forcing (Toll et al. 2017, Toll et al. 2019, Diamond et al 2020).
- 2) <u>Global, long-term remote sensing records</u>: substantial cloud adjustments cannot be excluded (Chen et al. 2014, Michibata et al. 2016, Gryspeerdt et al. 2019).

MOPGA German Research Initiative

2

Exploring the cloud water adjustment in deep marine stratocumulus decks

A. Possner, R. Eastman, F. Bender, F. Glassmeier

Estimates of cloud adjustment:

- 1) <u>Natural Laboratories:</u> cloud adjustment likely small (Malavelle et al. 2017) with moderate (< 30%) offset to Towmey forcing (Toll et al. 2017, Toll et al. 2019, Diamond et al 2020).
- 2) <u>Global, long-term remote sensing records</u>: substantial cloud adjustments cannot be excluded (Chen et al. 2014, Michibata et al. 2016, Gryspeerdt et al. 2019).
- 3) <u>In-situ observations and cloud-resolving model studies</u>: 75% of all high-resolution model studies investigating aerosol-cloud interactions in stratocumulus decks are conducted within narrow range of conditions (Possner et al. 2020).

- Summary of published literature (status Sept. 2019) exploring aerosol-cloud interactions in stratocumulus decks during field campaigns and in cloud-resolving models
- 70% of all stratocumulus decks reside in boundary layers deeper than 1 km, but are currently under-represented in the published literature

=> can we expect cloud adjustment to be invariant of boundary layer depth?

MOPGA German Research Initiative

Methods Overview

Analysis of boundary layer depth relationships in subtropical stratocumulus decks:

Federal Ministry of Education and Research

4

SPONSORED

MOPGA German Research Initiative

apossner@iau.uni-frankfurt.de

FRANKFURT AM MAIN

Gradients to coast line observed in all physical properties:

- Boundary layer deepens away from coast lines (500m to >2km in depth)
- LWP increases with |latitude| and distance to coast
- Strong gradients in N_d observed close to coast and relatively homogeneous elsewhere

(†)

(cc)

SPONSORED BY THE

MOPGA German Research Initiative

Scaling Relationships with H_{BL}

MOPGA German Research Initiative

- \rightarrow cloud albedo scales weakly with $\rm H_{_{BL}}$
- \rightarrow *In*LWP ~ 0.42 *In*H_{BI}
 - In adiabatic clouds (where $InLWP~2 InH_c$) cloud depth (H_c) increases by merely 3m for every 100m increase in H_{BL}
 - LWP-H_{BL} relationship controlled by external factors (gradients in SST, FT conditions and/or changes in aerosol concentration)
 - LWP-H_c relationship constrained by thermodynamics of boundary layer

$\sim N_{d}$ decreases with H_{BL}

- Distance to coast and thus sources of pollution is primary driver of this relationship in the absence of precipitation
- Results confirm precipitation dominant constraint on N_d

(cc)

(i)

Bi-variate fit of cloud water adjustment

7

MOPGA German Research Initiative

apossner@iau.uni-frankfurt.de

Bi-variate fit of cloud water adjustment

MOPGA German Research Initiative

apossner@iau.uni-frankfurt.de

(00)

•

8

Bi-variate fit of cloud water adjustment

apossner@iau.uni-frankfurt.de

 (\mathbf{i})

 (∞)

MOPGA German Research Initiative

9

BL depth dependence of s

s_{iwp} increases in magnitude from -0.1 for shallow BLs (depth \leq 300 m) to -0.31 in BLs deeper than 1.1km.

 $\textcircled{\bullet}$

SPONSORED BY THE

MOPGA German Research Initiative

BL depth dependence of s

s_{Iwp} increases in magnitude from -0.1 for shallow BLs (depth ≤ 300 m) to -0.31 in BLs deeper than 1.1km.

Precipitating stratocumulus are associated with stronger positive LWP adjustments in BLs lower than 1.5km.

•

(cc)

Federal Ministry of Education and Research

SPONSORED BY THE

MOPGA German Research Initiative

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

0

ΔInLWP/ΔInCDNC

10

1

• Change in s_{lwp} with H_{BL} is within 1 σ uncertainty of pollution track estimates where s_{lwp} decreases from -0.01 ± 0.13 to -0.13 ± 0.13 as BL depth increases to 3 km.

Climatological relationship of regime characterising most stratocumulus regions

Cloud top-height dependence in pollution tracks (Toll et al. 2019)

Cloud-top height (km)

3

2

15

20

LWP *R*e

Cloud-top height

Relative humidity above clouds

5

 $(\mathbf{\hat{H}})$

(cc)

25

Federal Ministry of Education and Research

SPONSORED BY THE

MOPGA German Research Initiative

- Change in s_{lwp} with H_{BL} is within 1 σ uncertainty of pollution track estimates where s_{lwp} decreases from -0.01 ± 0.13 to -0.13 ± 0.13 as BL depth increases to 3 km.
- Ship track estimate: $s_{lwp} = -0.028$ (Toll et al. 2019), versus shipping lane estimate: $s_{lwp} = -0.24$ (Diamond et al. 2020) also supports that slwp may be larger in deeper BL.

 (\mathbf{i})

(cc)

SPONSORED BY THE

MOPGA German Research Initiative

Limitations of remote-sensing based estimates

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

-1 -0.75 -0.5 -0.25 -0.1 0 0.1 0.25 0.5 0.75 1

MODIS

Limitations of remote-sensing based estimates

\rightarrow 3 diverging estimates of climatological s $_{lwp}$ distribution based on MODIS LWP and N $_{d}$ retrievals

- all estimates consistent in themselves
- different selection and filtering techniques applied with respect to e.g. N_d and precipitation characterisation

apossner@iau.uni-frankfurt.de

MODIS

Summary

- Our analysis suggests, consistent with pollution track estimates, that the cloud water adjustment triples in magnitude as the BL deepens from a few hundred meters to 1.2
- km in depth.
- Substantial uncertainty remains with remotely-sensed estimates of s_{lwp} which in part seems due to different methodologies in data processing.
- Susceptibility estimates and process verification in deep stratocumulus are currently poorly constrained due to lack of process studies in this depth range.

Thoughts on Way Forward

- 1) Upcoming analyses and case studies of ORACLES, CLARIFY and LASIC during which deeper BLs were sampled, can help close the gap between in-situ constrained shallow BL and deep BL estimates and help constrain remote-sensing based estimates.
- 2) Can we agree on "state-of-the-art" approach to quantify cloud water adjustment using low-cloud satellite retrievals? What are advantages and disadvantages of different methodologies and how are estimates effected?

Federal Ministry of Education and Research

MOPGA German Research Initiative