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NOTE :
because I cannot present, in red you will find some comments
as if I could explain the slides with simple words...
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Avalanche detection from SAR satellite imaging

• How to automatically detect avalanches?

• SAR (synthetic aperture radar) satellite imaging

• Snow surface is very di�erent after an avalanche
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Only the bottom
part, the deposit,
is visible in
SAR images
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Avalanche detection from SAR satellite imaging

RGB composition SAR image over the Mont Blanc chain using 3 sentinel-1 VH
images (R: 2017/08/24, G: 2018/01/15, B: 2018/01/09) highlighting avalanche

debris in light green for events between 09th and 15th Jan. 2018.
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We see the
avalanches
in green (but
many false
positives too)
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Avalanche detection from SAR satellite imaging

• Method 1: Learn function pixel-wise (random forests, SVM, k-NN...)

f (VV ,VH, slope, orientation, ..) = yes/no

Problem: avalanche debris only roughly localized.
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= list of avalanches (events)
recorded by mountain rangers, i.e.:
- in corridor A, an avalanche
occurred between Feb. 1 and Feb 4.
- in corridor B, ..

yes = white
      = avalanche
 
no  = black
      = no aval.
 



Context: Avalanche detection from SAR satellite imaging
Comparision of 3 di�erent machine learning solutions

1: pixel-wise classi�cation
2: convolutional neural networks
3: anomaly detection using auto-encoders

Avalanche detection from SAR satellite imaging

• Method 1: Learn function pixel-wise (random forests, SVM, k-NN...)

f (VV ,VH, slope, orientation, ..) = yes/no

Problem: avalanche debris only roughly localized.

S. Gi�ard-Roisin, S. Sinha, F. Karbou et al. Detecting avalanche debris from SAR imaging 6 / 11

Color polygons
= 'expert' SAR
labelling.
Does not
correspond to
white zones.

Each
avalanche
= specific
shape.
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Avalanche detection from SAR satellite imaging

• Method 2: Learn function from patches:

Prelim. results: 70% accuracy on

balanced test set
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We are more confident that the avalanche
will be in a patch centered on the bottom
part of the corridor, even if we don't know
exactly where..
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--> Difficult task !
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Avalanche detection from SAR satellite imaging

• Method 3: Anomaly detection using an auto-encoder
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Idea: can we do better by viewing the problem in a different way?
We know that avalanches are SCARCE = use an outlier detection?

1) First, train the model with only 'negative' examples. It will learn a
sparse representation of the patch by minimizing the reduction
error of the training set.
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Avalanche detection from SAR satellite imaging

• Method 3: Anomaly detection using an auto-encoder
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2) test on unseen data, with both positive and neg.
 samples. We hope that the reconstruction error will
 be larger for the avalanches, since it was not used in train.
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Avalanche detection from SAR satellite imaging

• Method 3: Anomaly detection using an auto-encoder

Prelim. results: 63% balanced

accuracy on unbalanced test set
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Harder than previous 'balanced' task
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Thank you
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Conclusion : - The definition of what problem we want to solve is
                     fundamental. Here, it is harder to separate the aval-
                     anches on an unbalanced dataset, but it is closer to
                     reality (avalanches are a rare event).
 
                     - The ground truth data, even if not perfect, can be
                     useful. For ex. here, we only know a rough location and
                     a rough date
 
                     - Yet, in this problem we need more information to be
                     able to solve this task. Specifically, there are too few
                     databases with ground truth labels that are independ-

 
 

 

                     ent of the SAR acquisition.

See our papers on the different methods for more details. Look at
my webpage for ex. (sophiegif.github.io/)
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