Rapid, continuous radiocarbon analysis of carbonate archives using laser ablation

M. Wertnik^{1,2}, C. Welte^{1,2}, L. Wacker¹, C. Yeman¹, B. Hattendorf³, J. Koch³, M. Christl¹, J. Fohlmeister⁴, D. Riechelmann⁵, H.-A. Synal¹, T. Eglinton²

Laboratory of Ion Beam Physics, ETHZ, Otto-Stern Weg 5, HPK, 8093 Zurich, Switzerland
Geological Institute, ETHZ, Sonneggstrasse 5, 8092 Zurich, Switzerland
Laboratory of Inorganic Chemistry, D-CHAB, ETHZ, Vladimir-Prelog Weg 1, 8093 Zurich, Switzerland
Potsdam Institute for Climate Impact Research (PIK) e.V., 14473 Potsdam, Germany
Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 21, 55099 Mainz

wertnikm@phys.ethz.ch, cwelte@phys.ethz.ch, wacker@phys.ethz.ch, yemanc@phys.ethz.ch, bodo@inorg.chem.ethz.ch, koch@inorg.chem.ethz.ch, mchristl@phys.ethz.ch, jens.fohlmeister@pik-potsdam.de, d.riechelmann@geo.uni-mainz.de, synal@phys.ethz.ch, timothy.eglinton@erdw.ethz.ch

Laser-Ablation-AMS

	Original Setup	Modified
fluence on sample	1-2.5 J·cm ⁻²	8-23 J·cm ⁻²
cell volume	600 µL	900 µL
spot size	680 x 110 μm^2	140 x 75 μm^2
ablation rate	100 µg/min	50-100 µg/min
carbon flow	6 μg/min	3.5 - 7 µg/min
max. ion current	7 μΑ	9 μΑ
blank level	0.011±0.002 up to 36'000 y	0.009 ± 0.002 up to 38'000 y

ALT R. I.

pulsed ArF excimer laser (GAM LASER, USA) laser repetition rate: up to 250 Hz (Yeman, C. (2019))

Carbonate conversion efficiency: $70 \pm 4\%$ (Welte et. al. (2017))

Stalagmite STAM-4

STAM-4 has been chosen as a sample because it is a fast grown stalagmite. Could a continuous ¹⁴C record be used to detect a subannual signal?

Previous measurements:

- Uranium/Thorium: inconclusive (too young, did not contain enough Thorium)
- 14C graphite-based measurements have been taken and the results agree well with those from LA-AMS

Growth Rate

Cloșani Cave

- 45.1°N, 22.8°E southern slope of Carpathians in SW Romania
- 433 m above sea level (msl)
- In Upper Jurassic limestone mainly calcite (93%), dolomite (7%)
- 1458 m long over a vertical range of 15 m (Warken et. al. (2018))

Radiocarbon Record of Stalagmite STAM-4

velocities: young \rightarrow old: v = 5 µm/s (equals ~19 pts/mm) old \rightarrow young: v = 2 µm/s (equals ~48 pts/mm)

data points are correlated to sample location with a python script.

Sample measuring time: about 6 h (+ 3 h standards)

Exploratory Analysis of STAM-4

Preliminary layer width measurement using high resolution scan picture.

Further analysis required to see what kind of signal we can detect in STAM-4.

While a subannual signal seems unlikely in this case, interesting features are found e.g. around 1980.

Zoom-in of Savitzky-Golay filter

This work was supported by ETH Research Grant ETH-03 18-2.

