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Technological and pharmaceutical development = The demand of Li, B, I, K, Mg,

NaCl and other raw materials will increase in the coming years

Lithium demand and UBS'’ forecasts
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These raw materials are extracted from the brines of salt flats (salars) .
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The Salar de Atacama is the world’s largest Li
reserve...

..but the genesis of its extreme Li enrichment is

still unknown

LI concentration:

d Salar de Atacama >7000 mg/I

O Geothermal springs around the Salar

de Atacama scarcely reach 50 mg/!




Motivation Previous hypotheses of Li enrichment

A) Advanced evaporation B) Leaching of buried salt flats/brines
Western
Numerical model profile  Cordillera How can it explain that the most

Li-rich brines are located in the
Salar Fault System and do not in
the minimum hydraulic head?

Buried salt flats/brines

Altiplano-Puna E

The barrier effect of the saline interface for the

How it explains that the most Li-rich

Salar de Atacama 1 it he Sl st hypothetical flow paths coming from the Altiplano-Puna
S (an the groundwater flow coming .
(orh ly distributed across th :
M | | wsowmrs 7 Sieennenn] o has not been taken into account by most of the
C) Leaking of present-day salt flats D) Groundwater rise along the Salar Fault previaus hyputheses.

How can it explain that the most System
Li-rich brines are located in the
Salar Fault System and do not in

the minimum hydraulic head?

Present-day salt flats

Jordan etal. (2002)
Lowenstein and Risacher (2009)

In addition, the flow paths coming from W to E of the

(an the groundwater flow coming (an the groundwater flow coming

Risacher et al. (2003)

Risacher and Frtz (2009 A T b 2 " e mrtce n e Salar de Atacama and the location of the minimum
E) Groundwater rise along any fault East of How can the hypotheses B, C, D and E explain that the hydraulic head of the regional water table have also
the Salar de Atacama groundwater inflowing the Salar de Atacama has no isotopic

been frequently ignored.

;How can it explain that the most Li-rich signal of previous evaporation (Marazuela et al., 2019a)?
brines are located in the Salar Fault
System and do not in the regional

minimum hydraulic head?
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Motivation New data question the previous hypotheses
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O The spatial mismatch between the minimum hydraulic
head and the Li-rich brines seems incompatible with the
previous hypotheses.

Marazuela et al. (2020b)



Objective

To explain the thermohaline groundwater flow of the Salar de Atacama to account
for the genesis of the world’s largest lithium reserve and discuss the feasibility of

the previous hypotheses

Three numerical simulations of the groundwater flow have been carried out to understand the
location of the most evaporated brines in saline systems and characterize the thermohaline

circulation of the present-day Salar de Atacama:

Simulation Time Objective Specific considerations
. 100,000 yr Location of the most evaporated brines in
Symmetric . .
evaporation (enoughtosee | ahypothetical ancient salt lake or salt flat Enucteus = Emz
P the final location with symmetric evaporation
. of the minimum | Location of the most evaporated brines in
Asymmetric . . Sy
evaboration hydraulic head in a salt flat considering the present-day Enucteus <<< E,
P each case) asymmetric evaporation from its origin
1)E <<< E
Mature Quasi-steady- The groundwater flow of the present-day (1) Enucieus mz
. (2) Pore water of San Pedro
stage state Salar de Atacama basin ) i i
Fm. is saturated in halite




Numerical model
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Q Heat inflow = 0.08 to 0.12 W-m?2




Numerical model
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Results The location of the minimum hydraulic head

Considering the present-day recharge in the basin, the evaporation distribution determines the

location of the minimum hydraulic head (MHH)

If EV nucleus = Ev marginal_zone If EV nucleus <<< Ev marginal_zone
(salt lake or ancient salt flat) (like present-day salt flat)
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B) 100,000 years

B) 100,000 years

I 175,000 - 200,000
I 150,000 - 175,000
Il 125,000 - 325,000
I 100,000 - 300,000
I 75,000 - 100,000
I 50,000 - 75,000

Il 175,000 - 200,000
I 150,000 - 175,000
I 125,000 - 325,000
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" Il 50,000 - 75,000
Mass concentration Bl 25.000 - 50,000
[(mI/L] w5000 - 25,000 ¥ Minimum hydraulic head

Mass concentration Bl 25.000 - 50,000

¥ Minimum hydraulic head [mo/L] mm 5,000 - 25,000

The most evaporated brines are expected toward the MHH



Results The present-day Salar de Atacama basin (mature stage)

0 The mixing zone persists in deep in spite of the temperature increase

Saline interface
O Density decreases in deep favoring the leaking from salt flats

B) Mass concentration

I 325,000 - 350,000 M 150,000 - 175,000
B 300,000 - 325,000 WM 125,000 - 325,000
W 275,000 - 300,000 M 100,000 - 300,000
" 250,000 - 275,000 M 75,000 - 100,000
I 225,000 - 250,000 M 50,000 - 75,000
Mass concentration [ll 200,000 - 225,000 [l 25,000 - 50,000
[mg/L] M 175,000 - 200,000 [ 5,000 - 25,000

C) Density

B 1,025 - 1,050
B 1,000 - 1,025
’ B 975- 1,000
i i ity i Density | -1100 MW 950-975
Reduction of brine density in depth [kg/m?3] “1075 I 940-950

due to temperature increase
10



Results

The present-day Salar de Atacama basin (mature stage)

Temperature field

Temperature increase by
hydro-thermo-haline convection
associated to faults

A) Temperature

Temperature decrease by
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This does not prevent thermohaline convection
in the Salar Fault System, located below the most
Li-rich brines

The temperature field is distorted by convection

cells in the faults
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Results The present-day Salar de Atacama basin (mature stage)

Thermohaline groundwater flow

Downward freshwater flow

Li-rich brine The most evaporated brine

D) Groundwater flow
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The MHH divides the basin into two isolated
and antisymmetric systems

All flow paths converge toward the MHH

The groundwater coming from the W can be Li-
enriched through the Salar Fault System

None flow path coming from the Altiplano-Puna can
reaches the Salar Fault System as a consequence of
the barrier effect of the mixing zone. 5



Conclusions

The thermohaline modelling of the Salar de Atacama basin has demonstrated:

v

v

The critical effect of the minimum hydraulic head (MHH) in the groundwater flow of salt flats.

The MHH divides the basin into two isolated and antisymmetric systems.

All flow paths converge toward the MHH where the most evaporated brines are expected.

The location of the MHH prevents to consider advanced evaporation as present-day Li enrichment mechanism.

The persistence of a saline interface in depth also precludes lateral inflowing from the Altiplano-Puna as Li

enrichment mechanism.

NEW HYPOTHESIS: Remobilization of ancient layers of Li-enriched salts and/or clays by diluted recharge waters

coming from the W-SW. This process is favored by convection cells in the Salar Fault System.
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