Continuum modelling of grain-size segregation in bedload transport

EGU 2020

H. ROUSSEAU

R. CHASSAGNE, J. CHAUCHAT and P. FREY

Bridge the gap between

Particle scale forces for size segregation (Guillard et al. 2016)

Continuum modelling of size segregation

Segregation forces on a single particle in a bath of small particles

Vertical Lagrangian equation of the large intruder:

$$\rho^p V_l \frac{dw^l}{dt} = P - \Pi_f + f_d^f + f_d^p - f_{seg}$$

• Solid drag force:
$$f_{seg} = V_l \mathcal{F}(\mu) \frac{\partial P^s}{\partial z}$$
 Tripathi and Khakhar (2011) ~ Stokesian drag force

• Segregation force: $f_d^p = c \pi \eta^p d_l \left(w^s - w^l
ight)$ Guillard et al. (2016) \sim Buoyancy force

How to express $F(\mu)$?

2D DEM Simulations:

Segregation force:
$$f_{seg} = V_l \mathcal{F}(\mu) \frac{\partial P^s}{\partial z}$$

From Guillard et al. (2016)

Upscaling to numerous particles...necessity of a continuum model

3 continuum phases:

- Fluid
- Large particles
- Small particles

Multi-phase flow model equations

Fluid momentum balance:
 Number of large particle per unit volume
 Fluid drag force

$$\rho^f \left[\frac{\partial \epsilon w^f}{\partial t} + \frac{\partial \epsilon w^f w^f}{\partial z} \right] = -\epsilon \frac{\partial p^f}{\partial z} - \rho^f g \cos \theta - n_l < f_d^{f \to l} > -n_s < f_d^{f \to s} > n_l < f_d^{f \to l} > -n_s < f_d^{f \to s} > n_l < f_d^{f \to l} > n_l < f_d^{f \to l} > -n_s < f_d^{f \to s} > n_s < n_s$$

Small particles momentum balance:

$$\rho^p \left[\frac{\partial \Phi^s w^s}{\partial t} + \frac{\partial \Phi^s w^s w^s}{\partial z} \right] = -\frac{\partial p^s}{\partial z} - \Phi^s \frac{\partial p^f}{\partial z} - \rho^p g \cos \theta + n_s < f_d^{f \to s} > +n_s < f_{l \to s} >$$

Large particles momentum balance:

$$\rho^{p} \left[\frac{\partial \Phi^{l} w^{l}}{\partial t} + \frac{\partial \Phi^{l} w^{l} w^{l}}{\partial z} \right] = -\frac{\partial p^{l}}{\partial z} - \Phi^{l} \frac{\partial p^{f}}{\partial z} - \rho^{p} g \cos \theta + n_{l} < f_{d}^{f \to l} > + n_{l} < f_{s \to l} >$$

$$n_{l} < f_{s \to l} > = \frac{\rho^{p} \Phi^{l}}{t_{ls}} \left(w^{s} - w^{l} \right) + \Phi^{l} \mathcal{F}(\mu) \frac{\partial p^{m}}{\partial z}$$

The small particles momentum balance is made dimensionless:

$$\frac{\partial \phi^{s} \tilde{w}^{s}}{\partial \tilde{t}} + \frac{\partial \phi^{s} \tilde{w}^{s} \tilde{w}^{s}}{\partial \tilde{z}} = -\frac{\tilde{p}^{m}}{\Phi} \frac{\partial \phi^{s}}{\partial \tilde{z}} + \frac{\phi^{s}}{St^{f}} \left(\tilde{w}^{f} - \tilde{w}^{s}\right) - \frac{\left(\tilde{w}^{s} - \tilde{w}^{m}\right)}{St^{p}} + \phi^{l} \mathcal{F}(\mu) \frac{\partial \tilde{p}^{m}}{\partial \tilde{z}}$$
with
$$St^{p} = \frac{\rho^{p} d_{l} W}{6c\eta^{p}}$$

$$\longrightarrow \quad \phi^{s} \tilde{w}^{s} = -\frac{\phi^{s}}{\Phi} \tilde{p}^{m} St^{p} \frac{\partial \phi^{s}}{\partial \tilde{z}} + \phi^{l} \phi^{s} \mathcal{F}(\mu) St^{p} \frac{\partial \tilde{p}^{m}}{\partial \tilde{z}}$$

$$S_{r} = \mathcal{F}(\mu) St^{p} \frac{\partial \tilde{p}^{m}}{\partial \tilde{z}}$$

$$D = \frac{\phi^{s} \tilde{p}^{m} St^{p}}{\Phi}$$

Results against DEM simulations of Chassagne et al. 2020

• Small particle dynamics is qualitatively reproduced

Too much diffusion of small particles concentration

Comparison of the coefficients with the DEM

9