

Cross-isentropic mixing: A DEEPWAVE case study

Hans-Christoph Lachnitt¹, Peter Hoor¹, Daniel Kunkel¹, Stefan Hofmann^{1*}, Martina Bramberger², Markus Rapp³, Andreas Dörnbrack³, Hans Schlager³

¹Institute for Atmospheric Physics, Johannes Gutenberg-Universität Mainz, Germany ²NorthWest Research Associates, Boulder, USA ³German Aerospace Research Center, Institute for Atmospheric Physics, Oberpfaffenhofen, Germany *now at enviscope GmbH

EGU General Assembly 2020

Contents

- Introduction and motivation
- Case study: DEEPWAVE flight 9
- Analysis of mixing
 - Tracer distribution and mixing
 - Wavelet coherence
 - Power spectral density
 - Graphical Turbulence Guidance (GTG)
- Summary

 orographic waves transport energy and momentum in the atmosphere

 linear waves induce no mixing

 mountain waves could induce turbulence and instabilities locally

 a possible consequence is cross-isentropic transport

Question:

 Is it possible to identify cross-isentropic mixing processes during a mountain wave event based on the distribution of trace gases?

Tracers: N₂O and CO

- N₂O and CO are tracers for diagnosing mixing
- both having a vertical gradient in the lower stratosphere

Görner, Hübner "Umweltschutztechnik" (1999)

9

Case study: DEEPWAVE flight 9

DEEPWAVE flight 9

flight paths during
 DEEPWAVE
 2014

preliminary data

measuring waves: flight legs parallel to the wind and cross to the mountains

PV cross-sections

upper flight legs close to the dynamical tropopause

preliminary data

Time series of flight 9 preliminary data Flight 9 SE NW NE NW SE NE SW SW 30 iorizonta vertical wind [m/s] 20 W month with 10 climb 2 -2 decent climb 10 330 320 θ 310 300 **290** 70 328 60 CO [ppbv] N₂O [ppbv] 324 50 320 40 30 316 վատիսորությունները արտրությունները հայտերությունները հայտորությունները հայտորությունները հայտորությունները հայտո mmmmm 17:30 18:00 18:30 19:00 19:30 20:00 12.07.2014 time [UTC] Date

• strongest wave signals within the south-western leg

N₂O - CO correlation

points (blue) between two stratospheric air masses (red, green) indicate mixing

oreliminarv data

N₂O - CO correlation

JG

Region of mixing

preliminary data

Tracer distribution and mixing

Tracer distribution and mixing

- Hypothesis:
 - windward side: background N₂O profile
 - mixing and turbulence induced by mountain waves change the gradient of $\rm N_2O$ and potential temperature
 - leeward side: new modified N₂O profile

 Reynolds decomposition:

$$q(t) = \overline{q} + q'(t)$$

$$<=>$$

$$q'(t) = q(t) - \overline{q}$$

- *q* determined
 from running
 mean for
 different values
 of averaging
 time (see next
 slides)
- here: 200s as an example

JG U preliminary data

 Reynolds decomposition:

$$q(t) = \overline{q} + q'(t)$$

$$<=>$$

$$q'(t) = q(t) - \overline{q}$$

How do the slopes depend on the averaging time scale (and thus on the wavelength)?

- slope values for the relation of Theta and N₂O as a function of averaging time separated into the regions upstream (blue), above mountains (black) and leeward of the mountains (red)
- long time scales (i.e. wavelengths): different slopes upwind and downwind

- short time scales slope change occurs for the transition from short to long time scales indicating the effect of small scale turbulent mixing on the tracer slope
- slope changes at small scales ⇒ waves may induce crossisentropic mixing

Wavelet coherence

Wavelet coherence

- wavelet coherence (color) is a measure of the intensity of the covariance of the two time series
- the arrows show relative phasing of two time series (right: anti-phase)

oreliminary data

Wavelet coherence

 areas of low coherence at small scales matches with the slope changes

preliminary data

Power spectral density

Graphical Turbulence Guidance

Mountain wave turbulence

 Graphical turbulence guidance analysis (Bramberger et al., 2019) confirms the occurrence of turbulence in the region of analysis

preliminary data

Summary

Summary

- CO-N₂O correlation of high resolution airborne measurements of gravity wave induced mixing above New Zealand during DEEPWAVE 2014 shows signatures of mixing
- the slope changes could be a hint for crossisentropic mixing
- Wavelet coherence supports the results of the slope analysis
- -5/3 slope and GTG calculations indicate the existence of turbulence
- mountain waves could lead to cross-isentropic mixing