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Inferring causality: Three strands of modern (Earth) science

• Real experiments

• Earth system simulation models

• Observational data analysis

First coupled climate model: Manabe, S., and K. Bryan, 1969: Climate calculations
with a combined ocean-atmosphere model. J. Atmos. Sci., 26, 786–789
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Inferring causality: Three strands of modern (Earth) science

• Real experiments

• Earth system simulation models

• Observational data analysis

Walker, G T. 1924. “Correlations in Seasonal Variations of Weather.” IX. Mem. Ind. Metorol. Dept. 24: 53–84.

1



Observational (climate) data analysis: 1st attempt

• Walker circulation: Monthly surface pressure

anomalies in the West Pacific (WPAC),

surface air temperature anomalies in the

Central Pacific (CPAC) and East Pacific

(EPAC)

• All three regions are strongly lag-correlated

with each other ‘in all directions’

Walker (1924)
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• Walker circulation: Monthly surface pressure

anomalies in the West Pacific (WPAC),

surface air temperature anomalies in the

Central Pacific (CPAC) and East Pacific

(EPAC)

• All three regions are strongly lag-correlated

with each other ‘in all directions’

Correlation

Walker (1924)
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Causal inference: 1st attempt

S. Wright, Correlation and Causation, J. of Agricultural Res. 10(7), 1921
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Causality and statistics

Karl Pearson’s “Grammar of Science” (1911): “Beyond such discarded

fundamentals as ‘matter’ and ‘force’ lies still another fetish amidst the

inscrutable arcana of modern science, namely, the category of cause and

effect.”
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Causality and statistics

Karl Pearson’s “Grammar of Science” (1911): “Beyond such discarded

fundamentals as ‘matter’ and ‘force’ lies still another fetish amidst the

inscrutable arcana of modern science, namely, the category of cause and

effect.” Correlation is not causation!
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Causality and statistics

Correlation is not causation! Well... not generally, but...

[Pearl, 2000, Pearl and Mackenzie, 2018, Spirtes et al., 2000]

4



Causality and statistics

Causal inference is about identifying assumptions and methods

that enable to learn causal relations from observational data
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State of the art



State of the art: Runge et al., NatComm Perspective 2019

a Granger causality b Nonlinear state-space methods

c Causal network learning algorithms d Structural causal models
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Challenges for causal inference



Challenges for causal inference: Runge et al., NatComm 2019

Challenges

Process:
1     Autocorrelation
2     Time delays
3     Nonlinear dependencies
4     Chaotic state-dependence
5     Different time scales
6     Noise distributions

Data:
7     Variable extraction
8     Unobserved variables
9     Time subsampling
10   Time aggregation
11   Measurement errors
12   Selection bias
13   Discrete data
14   Dating uncertainties

Computational / statistical: 
15   Sample size
16   High dimensionality
17   Uncertainty estimation
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PCMCI causal discovery

framework



PCMCI causal discovery framework

PCMCI: Assumes time-lags (Runge et al. Science Advances 2019)

Tigramite 4.2 python package
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)

https://arxiv.org/abs/2003.03685)
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)

https://arxiv.org/abs/2003.03685)

Enabling assumptions: Faithfulness, Markovity, Causal Sufficiency, no

contemporaneous effects, and stationarity
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)

https://arxiv.org/abs/2003.03685)

Enabling assumptions: Faithfulness, Markovity, Causal Sufficiency, no

contemporaneous effects, and stationarity

Nonlinearity and noise distributions handled by flexible conditional inde-

pendence tests
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Problems with PC algorithm

PC algorithm skeleton discovery phase can use different conditional inde-

pendence (CI) tests: Partial Correlation ρ(X ;Y |S), Conditional Mutual

Information I (X ;Y |S), etc.
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Problems with PC algorithm

Detection power for detecting X ��⊥⊥ Y | S depends on:

Sample size
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Problems with PC algorithm

Detection power for detecting X ��⊥⊥ Y | S depends on:

Sample size (given by dataset)

Significance level αPC (hyperparameter, difficult to tune)

Condition dimension, cardinality of |S| (PC optimizes this)

Effect size, i.e., magnitude of I (X ;Y |S) (Problem addressed here)
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Problems with PC algorithm

Consider underlying linear model, here I (Yt ;Zt) = 1
2 ln
(

1 + cVar(Z)
Var(Y )

)
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is

removed if min
S

I (X ;Y |S) < IαPC
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is removed

if min
S

I (X ;Y |S) < IαPC

Generally: Effect size for a link Xt−τ → Yt is small when conditioning

on parents of Xt−τ and large when conditioning on parents of Yt , i.e.,

I (X ;Y |P(X ))� I (X ;Y |P(Y )) [Runge et al., 2012a]

PC likely iterates through such conditions and removes true links.
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Problems with PC algorithm

Removed links are not used as conditions for larger p.
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Problems with PC algorithm

=⇒ False positives (incorrect links)! Then orientation phase also suffers

from wrong sepsets.
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Problems with PC algorithm

Then orientation phase also suffers from wrong sepsets.
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PCMCI+ causal discovery

Consider underlying true process graph.
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PCMCI+ causal discovery

Consider underlying true process graph.

Associated time series graph.
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PCMCI+ causal discovery

PCMCI+ has 3 phases: PC1 lagged phase, MCI contemporaneous phase,

Orientation phase.
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PCMCI+ causal discovery

PC1 lagged phase differs from PC algorithm twofold:
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PCMCI+ causal discovery

PC1 lagged phase differs from PC algorithm twofold:

(1) S iterates through lagged links only,
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PCMCI+ causal discovery

PC1 lagged phase differs from PC algorithm twofold:

(1) S iterates through lagged links only,

(2) S = {A(X j
t )}pl=1 for every cardinality p: lagged conditions with

largest association with X j
t .
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PCMCI+ causal discovery

PC1 converges to lagged parents plus parents of contemporaneous ances-

tors: B̂−t (X j
t ).
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PCMCI+ causal discovery

MCI contemporaneous phase is first initialized with lagged links B̂−t (X j
t )

and all contemporaneous links
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PCMCI+ causal discovery
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PCMCI+ causal discovery

Conditioning on both B̂−t (X j
t ) and B̂−t−τ (X i

t−τ ) has two important im-

plications: (1) MCI effect size larger than PC effect size, (2) MCI tests

well-calibrated (both discussed in paper)
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PCMCI+ causal discovery

Spurious links due to contemporaneous drivers are removed and sepsets
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PCMCI+ causal discovery

Orientation phase as for PC algorithm.
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Collider/unshielded triple rule: Yt is not in sepset(Yt−1,Zt) =⇒ orient

Zt → Yt

Rule R1: Orient remaining unshielded tripls in other direction

Further rules that make use of acyclicity assumption (see paper). PCMCI+

converges, links are repeated by assuming stationarity,
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PCMCI+ causal discovery

In paper:

• Asymptotical consistency: PCMCI+ is sound and complete

• Order independence (with majority rule in collider phase and conflict

resolution)

• Conjecture: Effect size is always greater than that of PC algorithm

min
S in PCMCI+

I (X i
t−τ ; X j

t | S, B̂j , B̂i ) > min
S′ in PC

I (X i
t−τ ; X j

t | S′)

• MCI tests are well-calibrated also for autocorrelated data

[Runge et al., 2019b]
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Numerical experiments

• random coupling topologies, time lags, linear/nonlinear

• 30% contemporaneous links, coefficients ±[0.1..0.5]

• different autocorrelations for variables

• τmax = 5, T = 500, varying N = 2..40

• αPC fixed, can be chosen via AIC

13



Numerical experiments

Comparing with PC algo, Granger causality + PC on residuals (GCresPC),

LiNGAM
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Numerical experiments

High adjacency detection rate, well-controlled false positives

14



Numerical experiments

High precision and high recall for strong autocorrelation; LinGAM makes

use of non-Gaussianity here, fails for Gaussians
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Numerical experiments

Slightly more unoriented, but also fewer conflicts (majority rule and conflict

resolution enabled)
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Numerical experiments

PC takes longer and is more variable
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Numerical experiments

High dimensionality: Still well-calibrated, high recall, less precision (at this

αPC)
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Numerical experiments

Large time lags: Almost no effect on precision and recall
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Numerical experiments

Nonlinear GPDC test: Higher recall than PC for high autocorrelation

14



Numerical experiments

Nonlinear GPDC test: Higher recall than PC for high dimensionality

14



Application examples



Application cases

• Testing causal hypotheses

[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,

Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,

Runge et al., 2019a, Krich et al., 2019]

• Optimal statistical prediction schemes

[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]

• Evaluating climate/physical models

[Schleussner et al., 2014, Nowack et al., 2019]
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Reconstructing Walker Circulation

• Monthly surface pressure anomalies in the

West Pacific (WPAC), surface air temperature

anomalies in the Central Pacific (CPAC) and

East Pacific (EPAC)

• Correlation analysis gives a completely

connected graph

• Also bivariate Granger Causality cannot

remove indirect and common driver links

• PCMCI [Runge et al., 2019b] better identifies

the Walker circulation

Runge et al. Nat. Comm. (2019)

16



Reconstructing Walker Circulation

• Monthly surface pressure anomalies in the

West Pacific (WPAC), surface air temperature

anomalies in the Central Pacific (CPAC) and

East Pacific (EPAC)

• Correlation analysis gives a completely

connected graph

• Also bivariate Granger Causality cannot

remove indirect and common driver links

• PCMCI [Runge et al., 2019b] better identifies

the Walker circulation

Runge et al. Nat. Comm. (2019)

Correlation

16



Reconstructing Walker Circulation

• Monthly surface pressure anomalies in the

West Pacific (WPAC), surface air temperature

anomalies in the Central Pacific (CPAC) and

East Pacific (EPAC)

• Correlation analysis gives a completely

connected graph

• Also bivariate Granger Causality cannot

remove indirect and common driver links

• PCMCI [Runge et al., 2019b] better identifies

the Walker circulation

Runge et al. Nat. Comm. (2019)

Bivariate GC

16



Reconstructing Walker Circulation

• Monthly surface pressure anomalies in the

West Pacific (WPAC), surface air temperature

anomalies in the Central Pacific (CPAC) and

East Pacific (EPAC)

• Correlation analysis gives a completely

connected graph

• Also bivariate Granger Causality cannot

remove indirect and common driver links

• PCMCI [Runge et al., 2019b] better identifies

the Walker circulation

Runge et al. Nat. Comm. (2019)

PCMCI

16



Space physics

• Hypothesis on interaction between

magnetospheric Auroral Electrojet

index (AL), magnetospheric ring

current strength (SYM-H), and solar

wind parameters

• Mutual information analysis gives

many dependencies

• Transfer Entropy cannot remove

indirect and common driver links

• PCMCI yields novel insight that solar

wind is common driver of

magnetospheric indices

Runge et al. Sci. Rep. (2018), ∆t = 20min

resolution
17
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Causal mediation analysis

• Pathway mechanisms by which El Nino

influences Indian monsoon through

sea-level pressure system

• Mediated Causal Effect (MCE)

quantifies how much an intermediate

variable (node) contributes to a causal

effect

• Linear path analysis (early approach

due to Sewall Wright in 1920s)

• Nonlinear extension in Runge Physical

Review E (2015)

Runge et al. Nat. Comm. (2015)
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Causal complex network analysis

• Complex network measures based on

extracted causal network from sea-level

pressure system

• Global causal gateways based on

Average Causal Effect (ACE)

• Here well represents tropical

atmospheric uplift regions

• Global causal mediators based on

Mediated Causal Effect (MCE)

Runge et al. Nat. Comm. (2015)
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Causal model evaluation (Nowack et al., 2020)

Motivation: Simple statistics (e.g. mean, variance, trends) can be right

for the wrong reasons
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Causal model evaluation (Nowack et al., 2020)

Idea: Compare climate models and observations in terms of causal rela-

tionships
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Causal model evaluation (Nowack et al., 2020)

First results: CMIP5 simulations (historical and preindustrial) vs

NCEP/NCAR reanalysis data of regional 3-day-mean sea level pressure
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Causal model evaluation (Nowack et al., 2020)

Validation: Similar climate models have similar causal networks; F-score

as network comparison metric
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Causal model evaluation (Nowack et al., 2020)

Model evaluation: Significant differences in comparison to reanalysis
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Causality benchmark platform



Causality benchmark platform CauseMe.net

Joint work with Jordi Munoz-Mari and Gustau Camps-Valls (U Valencia)
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Discussion and Conclusions



Discussion

• Causal inference = answering causal questions from empirical

data

• Causal inference methods only give you graph
• Causal conclusions are based on assumptions

• Causal Markov Condition

• Faithfulness

• Causal Sufficiency

• Time order

• Stationarity

• Assumptions on dependency types (linearity, etc) and distributions

• ...

• These sometimes cannot be tested from the same data or even any

empirical data

• Causal conclusions require to state assumptions and explain

reasons for believing them

• And to indicate how conclusions are altered for different assumptions
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Discussion and Conclusions

• Causal discovery from observational data is actually possible

• Many challenges stemming from nonlinear spatio-temporal nature

of system

• PCMCI+ for large-scale causal discovery

• Many application cases:

• Testing causal hypotheses: understanding processes, fault detection,

optimizing experimental designs

• Causal variable selection for complex machine learning models

• Optimal statistical forecast schemes

[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]

• Causal evaluation of physical climate models (Nowack et al., 2020)
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Thank you! Questions?

• PCMCI [Runge et al., 2019b] in Science Advances

• PCMCI+ Runge (2020) https://arxiv.org/abs/2003.03685

• Conditional independence testing based on CMI [Runge, 2018b] in

AISTATS

• Nature Comm. Perspective [Runge et al., 2019a]

• My software: jakobrunge.github.io/tigramite

Challenges

Process:
1     Autocorrelation
2     Time delays
3     Nonlinear dependencies
4     Chaotic state-dependence
5     Different time scales
6     Noise distributions

Data:
7     Variable extraction
8     Unobserved variables
9     Time subsampling
10   Time aggregation
11   Measurement errors
12   Selection bias
13   Discrete data
14   Dating uncertainties

Computational / statistical: 
15   Sample size
16   High dimensionality
17   Uncertainty estimation
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