

Nighttime to daytime transition of the oxidation products of isoprene by NO₃ radicals

E. Tsiligiannis¹, R. Wu^{2,3}, S. Kang², L. Hantschke², J. Thornton⁴, H. Fuchs², T. Mentel^{1,2} and M. Hallquist¹

¹ Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden ³ Institute for Energy and Climate Research, IEK-8 Troposphere, Forschungszentrum Jülich GmbH, Jülich, Germany ³ College of Environmental Sciences and Engineering, Peking University, Beijing, China ⁴ Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA Contact: epatsi@chem.gu.se

EGU General Assembly 2020 – Sharing Geoscience Online

Motivation on NO₃ + isoprene studies

- Biogenic volatile organic compounds (BVOC) emissions are 1 order of magnitude higher than the anthropogenic ones.
 - Isoprene represents about 50% of the total BVOC emissions.
- \checkmark **NO**₃ can be the **major oxidant** during **nighttime**.
 - NO₃-induced oxidation of BVOC has been poorly studied compared to OH and O₃ oxidation.
- ✓ Better representation of organonitrates formation is essential for properly describing isoprene's effect on NO_x, HO_x as well as ozone formation.
- Contribution of organonitrates to secondary organic aerosol (SOA).

Guenther et al., 2012; Goldstein & Galbally, 2007; Wennberg et al., 2018; Lee et al., 2016; Fry et al., 2018

Photo: E. Tsiligiannis

NO₃ formation $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_3 + NO_2 + M \leftrightarrow N_2O_5 + M$

Experimental set up & conditions

Photo: E. Tsiligiannis

Atmospheric simulation chamber **SAPHIR** at **Forschungszentrum Jülich**, Germany (Aug. 2018)

- Volume: 270 m³, surface: 320 m²
- FEP double wall
- Ambient pressure & temperature
- Shutter system for simulating dark conditions or daytime by exposuring to sunlight

RO₂+NO₃ → NISOPCHO +OH / + hv $\downarrow + NO_3 \rightarrow RO_2 \xrightarrow{RO_2 + RO_2} ISOPNO3$ $+NO_{3}/+O_{3}$ +OH / + hv $\xrightarrow{\mathsf{RO}_2 + \mathsf{HO}_2} \mathsf{NISOPOOH}$ $+ NO_{3} / + O_{3}$ +OH / + hv $+ NO_3 / + O_3$ Isomerization +OH / + hv 1. Regimes of 2. Later oxidation 3. Later oxidation different RO₂ fates steps (nighttime) steps (daytime)

Various chemical conditons in order to change the **fate** of the **peroxy radicals** initially formed by NO₃+isoprene

- \blacktriangleright High/low RO₂ or HO₂
- Without or with seed particles
 - (NH₄)₂SO₄ with or without organic coating (βcaryophyllene)
- Nighttime to daytime transition
 - Photolysis
 - Photolysis + OH radicals

□ Isoprene injections

 \square NO₃ formation by NO₂/O₃ injections

Rohrer et al., 2005

Focus on this study Instrumentation

Gas & particle phase measurements by I⁻ Chemical Ionization Mass spectrometer (CIMS)

Photo: E. Tsiligiannis

Resolution:					
~	4000	M/ΔM			

Ma	<u>iss Ra</u>	ange
0 –	1000) Th

Detection limits:

Gas-Phase: e.g, 4 pptv formic acid (1s, Bertram et al., 2011), 0.4 pptv malonic acid (15s, Lee et al., 2014) **Aerosol, FIGAERO**: e.g, 4 ng m⁻³ formic acid and 2 ng m⁻³ C₉ pinene acid (Lopez-Hilfiker et al., 2014)

Experiments

- Gas phase measurements of Organonitrates
- Effect of OH oxidation on the nighttime products

Conditions	Aug. 12	Aug. 12
	Nighttime → Photolysis	Nighttime → Photolysis + OH oxidation
Max Isoprene (ppbv)	3	2.5
O ₃ (ppbv)	70-115	80-115
NO ₂ (ppbv)	4-12	2-5
CO (ppbv)	120000	20
Seed aerosol	No	$(NH_4)_2SO_4$
Max J(NO ₂)/10 ⁻³ s ⁻¹	4.8	4.8
T (°C)	14-36	20-28
H ₂ O (%)	0	1.6

Mass spectra overview

 Monomers: C₅H₉NO_{4,5,6}, C₅H₇NO_{4,5,6}, C₄H₇NO₅ (major compounds)
Dinitrates: C₄H₆N₂O₇, C₅H_{8,10}N₂O₈, C₅H_{8,10}N₂O₉ → Probably formed by 1st gen. organonitrates + NO₃
Dimers: C₁₀H₁₆N₂O_{8,9,10} → RO₂ + RO₂

Product time evolution – exp. Aug 12th

	(M) : (D) : (A)
1 st injection	10 : 0.72 : 0.29
2 nd injection	10 : 0.68 : 0.17
3 rd injection	10 : 0.72 : 0.19
Daytime	10 : 0.79 : 0:18

- ✓ 36 mononitrates, 20 dinitrates & 15 accretion products have been identified.
- Mononitrates are the dominant signal.
- ✓ Dinitrates increase relative to mononitrates with time.
- Accretion products decrease relative to mononitrates with time.

O:C ratio time evolution – exp. Aug 12th

- ✓ O:C ratio increases (1.06 to 1.14) with time & after a new isoprene injection.
- ✓ O:C ratio of C_4 & C_5 compounds increase with addition of NO₃ + isoprene.
- ✓ O:C ratio of C₅ compounds decreases during daytime while O:C ratio of C₄ compounds increases during daytime.

Photolysis effect

Photolysis + OH radicals effect

Most of the mononitrates are photolyzed rapidly during daytime.

- ✓ The major C₄H₇NO₅ products are enhanced further under the presence of both photolysis and OH chemistry.
- ✓ Less sharp reduction of compounds with chemical formula C₅H₉NO₅ under the presence of OH chemistry. Likely consumed by photolysis but formed by OH oxidation.

Potential formation pathways of $C_4H_7NO_5$ compounds:

```
C_5H_9NO_4 + NO_3 \rightarrow \cdots \rightarrow C_4H_7NO_5
```

 $C_5H_9NO_5 + OH \rightarrow \cdots \rightarrow C_4H_7NO_5$

Photolysis effect

Photolysis + OH radicals effect

Dinitrates

- ✓ The major dinitrate $(C_5H_6N_2O_8)$ get photolyzed.
- ✓ All the major dinitrates increase under the presence of OH radicals.

Accretion products

- Sharp reduction during photolysis.
- Less pronounced reduction with both photolysis and OH chemistry.
- Possible a day-time source from OH oxidation.

Conclusions

- Mononitrates, dinitrates & accretion nitrated compounds were characterized.
- □ O:C ratio increases (1.06 to 1.14 at the given experiment) with time and after a new isoprene injection.
- Most of the nighttime products are photolyzed during daytime.
- Products with the chemical formula C₄H₇NO₅ become the dominant ones during daytime conditions and enhanced further via OH chemistry.
- □ C₅H₉NO₅ products are **photolyzed** during **daytime** but partly **compensated** by formation from **OH chemistry**.

The research presented is a contribution to the Swedish strategic research area ModElling Regional and Global Earth system, MERGE. This work was supported by the Swedish Research Council (grant No. 2014-5332) and Formas (grant No. 942-2015-1537). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research & innovation program (SARLEP grant agreement No. 681529) & from the European Commision (EC) (Eurochamp 2020 grant No. 730997).

Thanks to all the participants of the NO3ISOP SAPHIR campaign Aug. 2018.