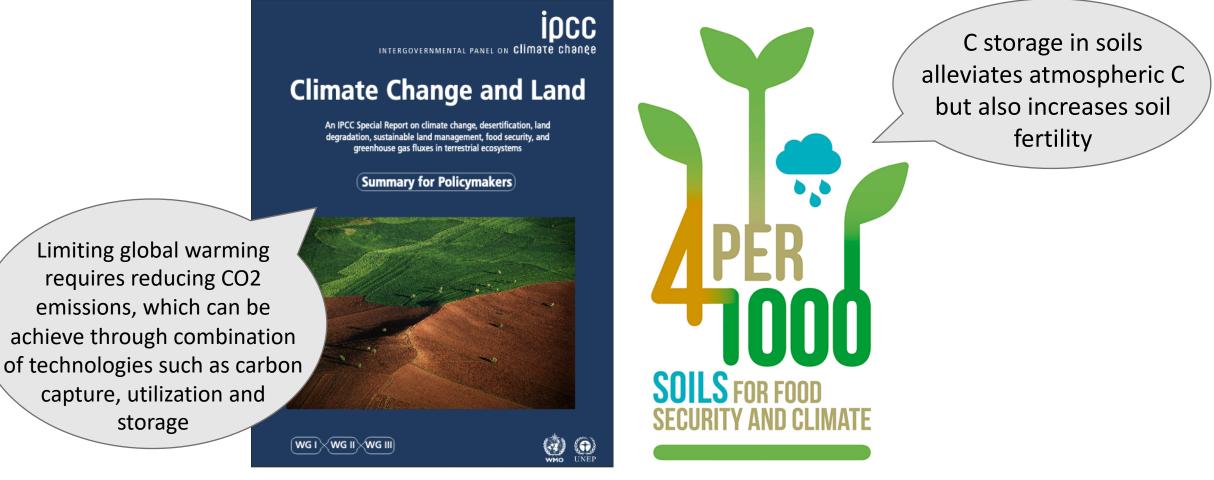
Does compost and biochar interact on the stability of the mixture and does these interactions change after weathering ?


νEES

París

Marie-Liesse AUBERTIN^(1,4), David HOUBEN ⁽²⁾, Cécile NOBILE ⁽²⁾, Sabine HOUOT ⁽³⁾ et Cyril GIRARDIN ⁽³⁾, Cornelia RUMPEL⁽⁴⁾ ⁽¹⁾ French Environment & Energy Management Agency ; ⁽²⁾ UniLaSalle Beauvais, France ; ⁽³⁾ UMR INRAE-AgroParisTECH, France ; ⁽⁴⁾ CNRS IEES,-Paris, UMR 7618, CNRS-UPMC-UPEC-INRA-IRD, France

We need to find negative emission technologies to mitigate climate change

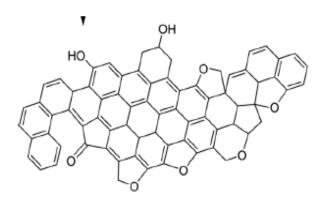
Revised by the IPCC on January 2020

Biochar as a solution to store carbon in soil

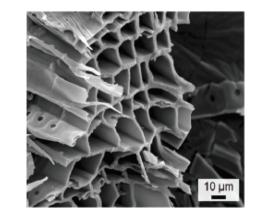
Global Change Biology

Global Change Biology (2016) 22, 1315–1324, doi: 10.1111/gcb.13178

Soil carbon sequestration and biochar as negative emission technologies

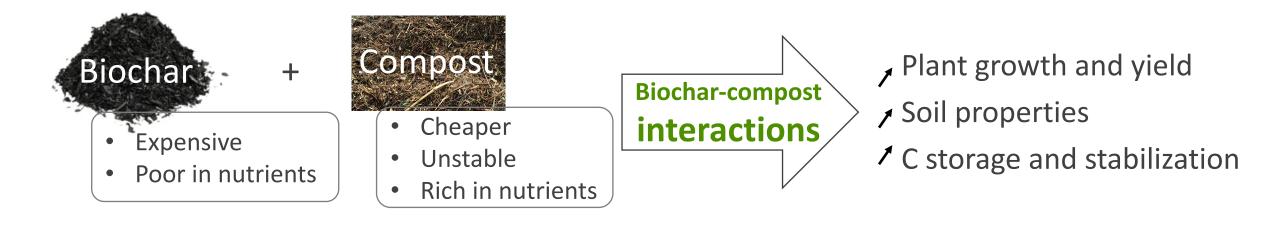

PETE SMITH

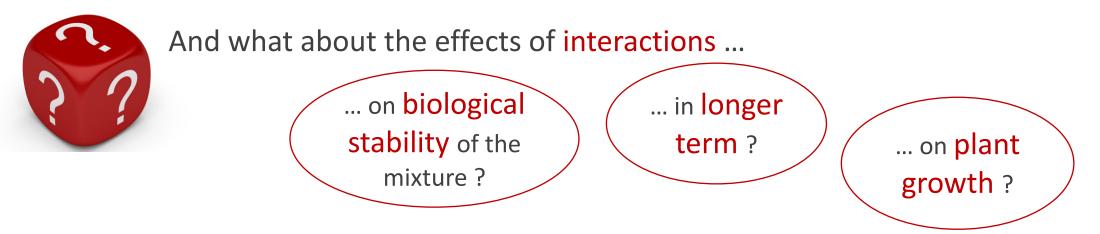
Institute of Biological and Environmental Sciences, Scottish Food Security Alliance-Crops & ClimateXChange, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK

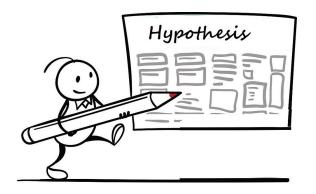

Biochar : pyrolyzed biomass

- Stable carbon (polycyclic aromatic carbon)
- High porosity

→ water retention, aeration, microorganisms shelter, nutrient absorption

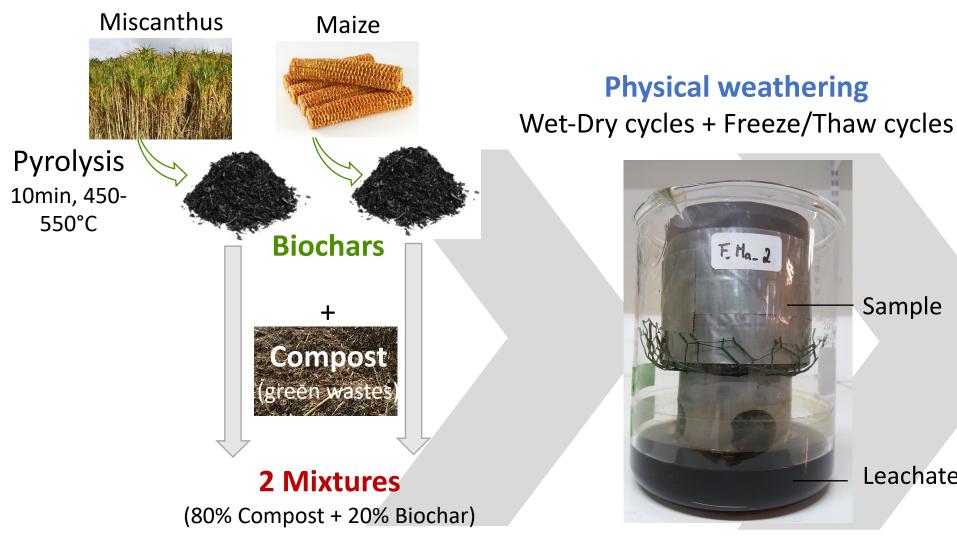



Biochar network. Liu et al. 2015


Biochar, SEM. Thompson et al. 2014.

Biochar combined with compost for a better performance ?

Wang et al. 2016; Jien, 2015; Fischer and Glaser 2012


Biochar-compost interactions ...

- depend on initial feedstock
- induce synergistic effects on biological stability and plant growth
- $\hfill\square$ is alleviated with time

Experimental setup

Study on 2 mixtures differing by initial biochar feedstock
Artificial physical weathering to simulate ageing
Analysis of biological stability of both mixtures
Analysis of plant growth

Preparation of fresh and weathered samples

Naisse et al. 2015

Sample

Leachate

Samples weathered :

- 2 biochars •
- 2 mixtures •
- 1 compost

Analysis of mixtures stability and plant growth

Weathering effect

pH, EC

*CO*₂-*C* analysis with micro-GC

Biological stability

Incubation

Compost, biochar and 2 mixtures with soil inoculum 205 days, 20°C

- Mineralization kinetic (CO₂-C release)
- Stable C isotope signature of CO2
 to differentiate emissions from biochar (C4) and compost (C3) by isotopic mass balance calculation

Plant growth

Pot experiment

Soil : calcisol Mixture addition : 20 t.ha-1 Compost addition : 16 t.ha-1 Rye-grass (Lolium multiflorum) biomass, 4 weeks growth

Weathering induced leaching of basic compounds and salts

Biomass	pН	EC (µS/cm)
Compost		
С	8,4 0,01	943,7 18,1
W*/C	7,9 0,01	215,3 3,8
Biochars		
Maize	10,5 0,02	1639,7 61,7
W*/Maize	na na	na na
Miscanthus	10,4 0,01	1516,3 14,0
W*/Miscanthus	9,4 0,02	129,3 3,1
Mixtures		
C+Maize	9,1 0,03	1588,0 11,8
W*/C+Maize	8,6 0,01	• 224,0 2,6
C+Miscanthus	8,9 0,03	1598,3 20,3
W*/C+Misc	8,5 0,01	238,3 14,6

- Biochar increased liming potential and salinity of the mixtures
- Weathering induced a strong leaching of salts

W* : weathered Na : not available

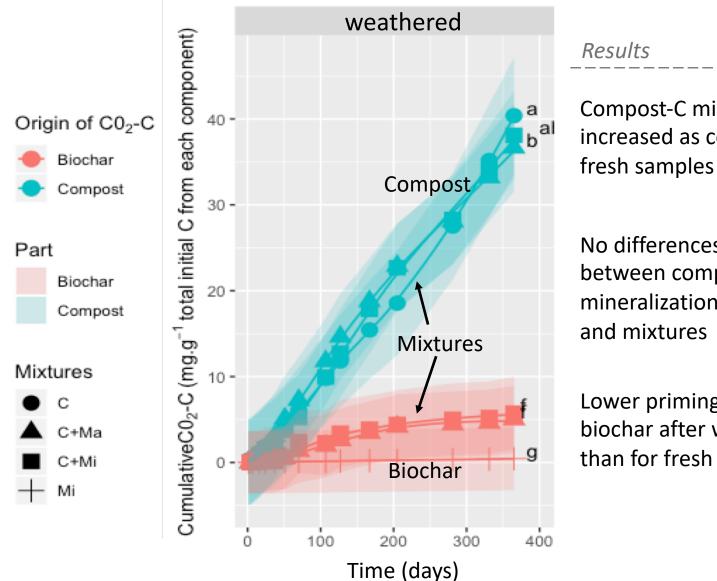
Results - Biological stabiity

Biochar increased biological stability from compost

Incubation \rightarrow calculation of CO2-C emission from compost (C3 plant) and biochar (C3 plant) using their different isotopic signatures.

Compost-C mineralization decreased when mixed with biochar Biochar inhibited compost-C mineralization within the mixture

Interpretation

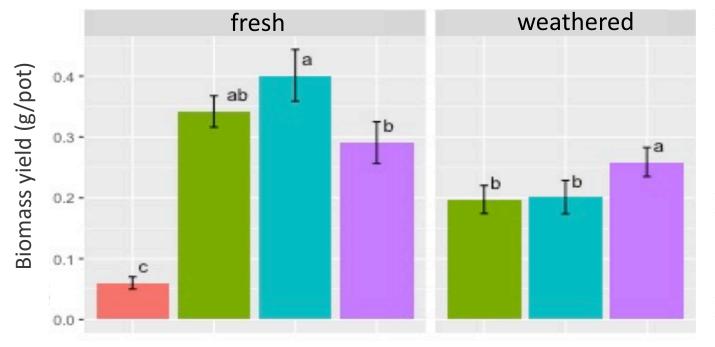

Biochar-C mineralization increased when mixed with compost

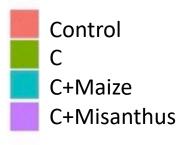
Priming effect on biochar mineralization from the mixtures due to nutrients from compost.

9

Results - Biological stabiity

Weathering alleviated biochar-compost interactions on compost-C




Interpretation Weathering alleviated Compost-C mineralization increased as compared to compost-C mineralization due to salts leaching No differences anymore Weathering alleviated between compost-C biochar effect on mineralization from compost compost-C mineralization

Lower priming effect on biochar after weathering than for fresh samples

Weathering alleviated priming effect on biochar-C mineralization

Interactions on plant growth depended on biochar feedstocks

Biomass production from rye-grass 4 weeks after seedling in calcisoil

- Both compost and mixtures increased plant growth as compared to the control. This effect was persistent when wethered material was added to soil
- Biochar induced neutral effect or antagonism on plant growth for fresh mixtures
- After weathering, mixtures showed synergistic or neutral effects on plant growth
- Biochar-compost interactions on plant \geq growth are dependent upon biochar feedstock

Conclusion

Biochar-compost interactions depend on initial feedstock especially regarding interactions on plant growth

- The fresh mixtures induced :
 - Synergistic effects on biological stability for compost-C
 - Neutral or antagonisms effects on plant growth

• Weathering showed :

- Alleviated effects on biological stability
- Neutral or synergistic effects on plant growth

Acknowledgements

Project funded by :

ADEME ADEME Agence de l'Environnement et de la Maîtrise de l'Energie

French environment & energy management agency

Unique interdepartmental background for the project Biochar 2021

<u>Collaborations</u> :

References

- Fischer, D., & Glaser, B. (2012). Synergisms between compost and biochar for sustainable soil amelioration. Management of organic waste, 1.
- Jien, S. H., Wang, C. C., Lee, C. H., & Lee, T. Y. (2015). Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures. *Sustainability*, 7(10), 13317-13333.
- Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews, 115(22), 12251-12285.
- Naisse, C., Girardin, C., Lefevre, R., Pozzi, A., Maas, R., Stark, A., & Rumpel, C. (2015). Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. Gcb Bioenergy, 7(3), 488-496.
- Ngo, P. T., Rumpel, C., Ngo, Q. A., Alexis, M., Vargas, G. V., Gil, M. D. L. L. M., ... & Jouquet, P. (2013). Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource technology, 148, 401-407.
- Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global change biology, 22(3), 1315-1324.
- Thompson, E., Danks, A. E., Bourgeois, L., & Schnepp, Z. (2015). Iron-catalyzed graphitization of biomass. *Green Chemistry*, *17*(1), 551-556.
- Wang, G. J., Xu, Z. W., & Li, Y. (2016). Effects of biochar and compost on mung bean growth and soil properties in a semi-arid area of Northeast China. International Journal of Agriculture and Biology, 18(5), 1056-1060.