Combining multispectral and texture imagery features to assess health condition in priority riparian forests by means of unmanned aerial systems

Patricia María Rodríguez González¹, Juan Guerra-Hernández², Ramon Alberto Díaz-Varela³, Juan Gabriel Álvarez-González⁴

Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal, (patri@isa.ulisboa.pt), 23edata, Lugo, Spain (juanguerra@isa.ulisboa.pt)

³Departamento de Botánica (GI-1809-BioAplic), Escola Politécnica Superior, Universidade de Santiago de Compostela, Spain (ramon.diaz@usc.es)

⁴Unidade de Xestión Forestal Sostible (GI-1837-UXFS), Departamento de Producción Vexetal e Proxectos de Enxeñaría, Escola Politéctica Superior, Universidade de Santiago de Compostela (juangabriel.alvarez@usc.es)

EGU General 2020 Online 4-8 May 2020

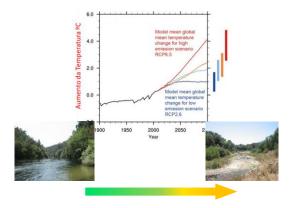
Background: Importance and threats to riparian forests

IMPORTANCE **Riparian systems:** <u>ecological importance</u> in relation to their surface area extent

THREATS **Historical - floodplain degradation** depleting ecosystem functions and services

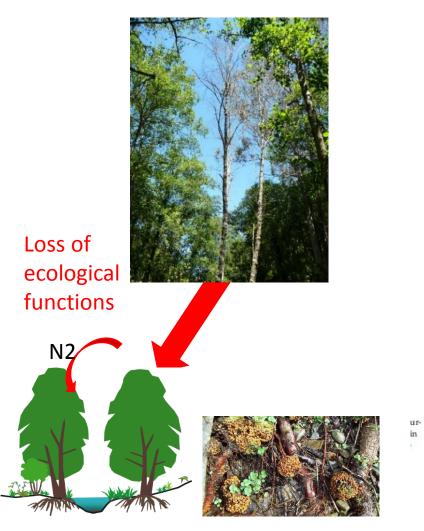
Currently - Emerging global threats

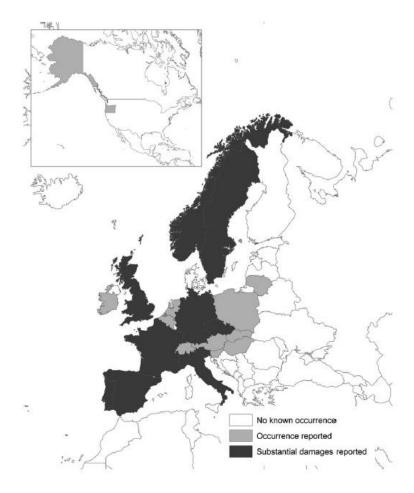
- Climate change
- Pests and pathogens causing extensive decline worldwide



Background: Decline of alder forests across Europe

- Alnus glutinosa L. Gaertn (alder) forests Foundation species in riparian zones (N₂ fixing sp)
- 91EO* habitat priority for conservation at EU
- Substantial decline across Europe caused by *Phytophthora alni* species complex





Bjelke et al 2016

Challenge:

- Management requires accurate assessment of health status
- UAV offers new potential tools yet mapping disease-induced defoliation is particularly challenging in high density ecosystems with high spectral variability due to canopy heterogeneity

• GOALS OF THE STUDY

- ✓ Improve classification methods of health status in alder forests
- Exploring a set of new image attributes including Texture and spectral variables

Methods (I)

Field survey

Tree sampling

- 81 trees
- x,y, submetric GPS (Astech Mobile Mapper 100)
- Health condition: defoliation, presence of canker, injuries
- Dbh, h, #alive and dead trunks

4 Health condition categories

Healthy
10-50% Defoliation >50% Defoliation
Dead

A
B
C
D

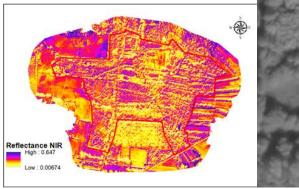
Image: Constraint of the second second

Study site: NW Portugal Natura 2000 SCI Rio Lima PTCON0020

Unnmaned Aerial Vehicle (UAV): two types of data

- Structure from Motion image processing
- Georeferenced with 9 GCP submetric GPS

multispectral Parrot Sequoia



NIR reflectacnce

Red edge reflectance

RGB-UAV-data

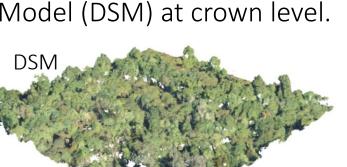
Crown delineation

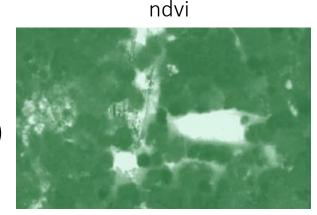
Methods (II)

Remote sensing data acquisition:

34 variables extracted from images including

- MULTISPECTRAL SENSOR
- \checkmark Multispectral orthomosaic used for vegetation index calculation
 - 4 multispectral bands: green, red, near-infrared, red-edge (4 variables)
 - set of vegetation indices (VI) (8 variables)
 - texture features from NDVI (8 variables)
- RGB SENSOR
- ✓ Digital Aerial Photogrammetry-derived structural from Digital Surface Model (DSM) at crown level.
 - topographic variables from DSM (6 variables)
 - texture features from DSM (8 variables)





Methods (III) Data analyses:

Response variable \rightarrow Y=Health condition classes A B C D Candidate predictor variables \rightarrow Xi= all 34 variables from spectral and RGB sensors

Two approaches for modelling health condition classification

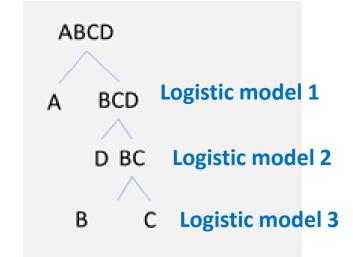
- Random Forests:
 - ✓ Variable importance measure on the impurity reduction of splits (Mean Decrease Gini)

library(randomForest)

• Robust three-step logistic modelling:

✓ Model performance based on R^2 adjusted (Nagelkerke (1991)

R function glm

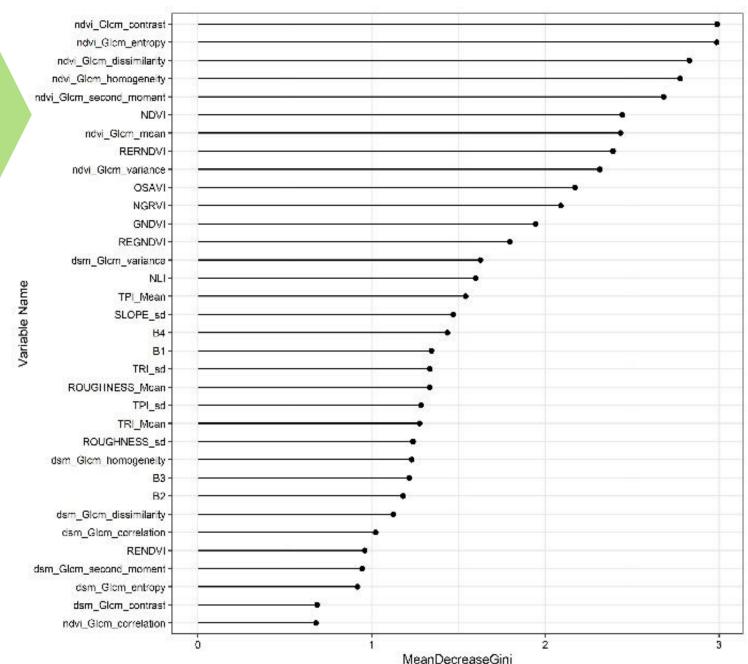


Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78, 691-692.

Results (I) Random Forests (4 classes)

The most important variables:

- textural spectral variables from NDVI,
- spectral indices (e.g. NDVI, RERNDVI)
- *dsm_Glcm_variance* form DSM



R library(randomForest)

relative ranking of the remote sensing features

Results (II) Random Forests



Image classification accuracy by group in four classes where A = number of healthy trees, B= number of defoliated trees less than 50%, C= number of defoliated trees more than 50% and D= death trees, PA = producer's accuracy, UA = user's accuracy, **bold values** = overall accuracy.

Results (III) Logistic Models

Logistic model 1 (probability of the tree belongs to category A)

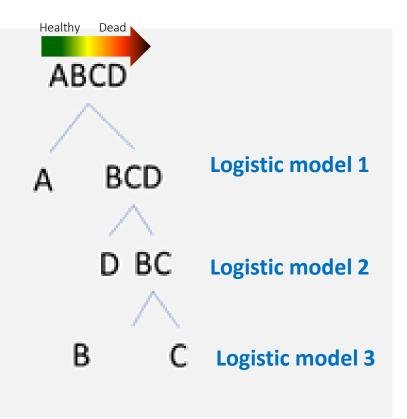
 $\pi(A) = \frac{\exp(-17.085 + 29.038 \cdot GNDVI - 18.669 \cdot DSM_{GLCM_{dissimilarity}})}{1 + \exp(-17.085 + 29.038 \cdot GNDVI - 18.669 \cdot DSM_{GLCM_{dissimilarity}})}$

 Logistic model 2 (probability of the tree belongs to category D, discriminate between the group D (death trees) and the group of defoliated trees (B and C))

 $\pi(D) = \frac{\exp(-11.8445 + 39.6708 \cdot NDVI_{GLCM_{contrast}} + 0.02244 \cdot DSM_{GLCM_{variance}})}{1 + \exp(-11.8445 + 39.6708 \cdot NDVI_{GLCM_{contrast}} + 0.02244 \cdot DSM_{GLCM_{variance}})}$

 Logistic model 3 (probability of the tree belongs to category B)

 $\pi(B) = \frac{\exp(-14.7280 + 38.2480 \cdot NGRVI)}{1 + \exp(-14.7280 + 38.2480 \cdot NGRVI)}$



Results (IV) Logistic Models

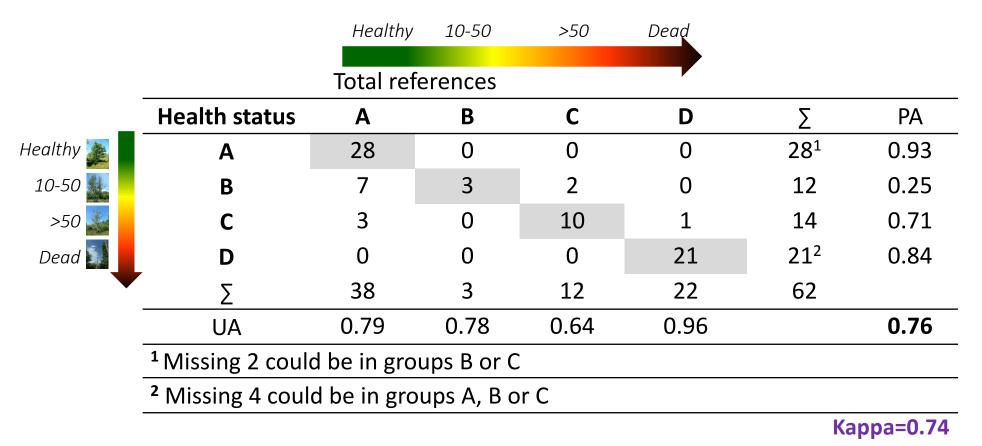


Image classification accuracy by group in four classes where A = number of healthy trees, B= number of defoliated trees less than 50%, C= number of defoliated trees more than 50% and D= death trees, PA = producer's accuracy, UA = user's accuracy, **bold values** = overall accuracy.

Discussion

- The logistic three step robust approach performed better (Kappa=0.74) than the RF (Kappa= 0.52)
- Notably, Texture variables (spectral and derived from DSM) offered promising results
- healthy class was better predicted by variables related with vegetation indices (such as NDVI)
- dead trees were better discriminated from infected trees by heterogeneity in texture (spectral and from DSM)
- Prospects:
 - \checkmark Rapid and effective assessment of areas affected by the disease
 - \checkmark Alternative robust classification method to forest and conservation managers,
 - Application: planning of control and restoration measures aimed at reducing these forests vulnerability and black alder mortality
 - \checkmark Potential application to other species

Thank you for your attention!! <u>patri@isa.ulisboa.pt</u>

ACKNOWLEDGEMENTS

Patricia M Rodríguez-González is funded by Portuguese Foundation for Science and Technology, through UID/AGR/00239/2019, through Investigador FCT programme IF/00059/2015

And through LIFE FLUVIAL (LIFE16 NAT/ES/000771) "Improvement and sustainable management of river corridors of the Iberian Atlantic Region"

Juan Guerra Hernández is co-funded by the Spanish Ministry of Science and Innovation. Torres Quevedo Programme (PTQ)

