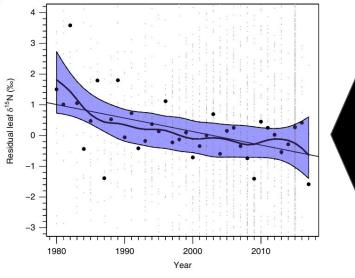
BG3.25 - 9602

Disentangling the long-term foliar ¹⁵N signal using a land surface model

Silvia Caldararu Tea Thum, Richard Nair, Sönke Zaehle

Established by the European Commissi



Aim: To identify the drivers behind observed trends in foliar $\delta^{15}N$, as described in Craine et al. 2018

Method: A land surface model (QUINCY) with the capacity to represent $\delta^{15}N$ processes, where alternative hypotheses can be tested separately.

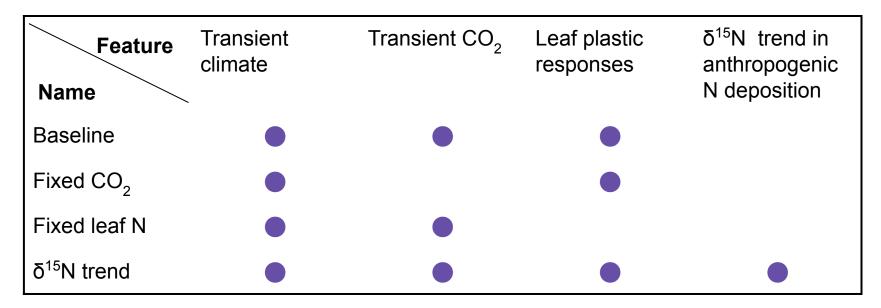
Conclusions: Predicted decreases in foliar δ^{15} N are mainly driven by the effects of elevated atmospheric CO₂ over the last century. However, the magnitude of this trend is much smaller than the observed trend. Including a change in the δ^{15} N of anthropogenic N deposition in the model partially explains the discrepancy between model and data.

N limitation is very difficult to measure and $\delta^{15}N$ observations have been proposed as a tool to do this.

<u>Previous studies</u> have attributed the trend in time of foliar δ^{15} N to progressive nitrogen limitation under elevated atmospheric CO₂.

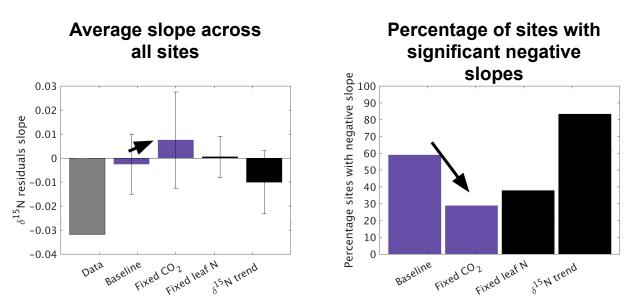
BUT while this observational dataset is very valuable, it cannot investigate the mechanisms behind the observed trend.

Elevated atmospheric CO_2 drives ecosystem N limitation and therefore the change in foliar $\delta^{15}N$



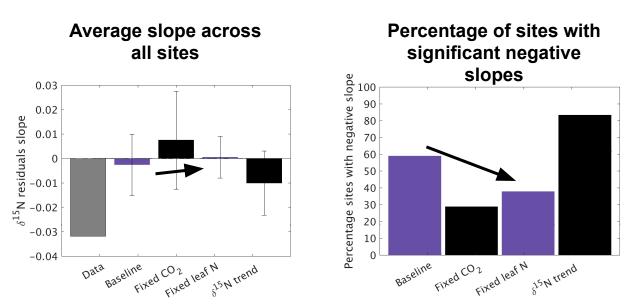
Plants have the capacity to alleviate N limitation through plastic responses, leading to less of a decrease in foliar $\delta^{15}N$

Changes in sources of anthropogenic N deposition lead to a decrease in foliar $\delta^{15}N$


We use a land surface model to test these hypotheses and run the following model scenarios

For more details on the methodology, see slides 10 and 11

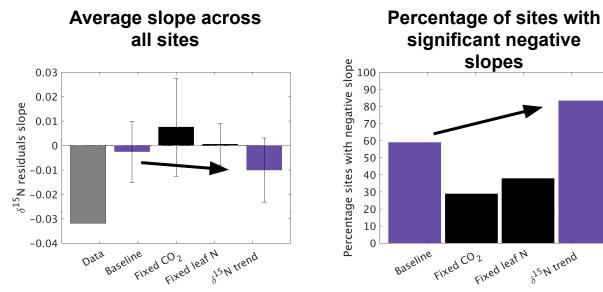
Elevated atmospheric CO_2 drives ecosystem N limitation and therefore the change in foliar $\delta^{15}N$


Fixed atmospheric

 CO_2 leads to a positive average trend in $\delta^{15}N$ residuals, confirming our hypothesis

Highlighted bars represent model versions relevant for this hypothesis

Plants have the capacity to alleviate N limitation through plastic responses, leading to less of a decrease in foliar $\delta^{15}N$



The baseline model can vary the leaf N content and biomass allocation in response to N limitation, Contrary to our hypothesis, we see a smaller decrease in $\delta 1^5 N$, at fewer sites, for a fixed leaf N, due to higher growth if plants are allowed plastic responses.

Highlighted bars represent model versions relevant for this hypothesis

Changes in sources of anthropogenic N deposition lead to a decrease in foliar $\delta^{15}N$

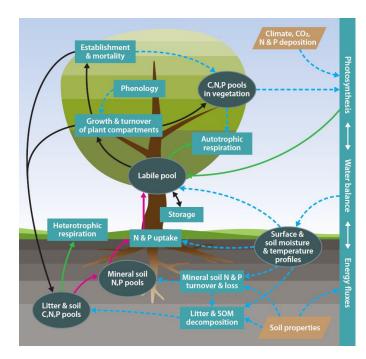
We introduce a trend in δ^{15} N of N deposition according to observations from <u>Holtgrieve et al.</u> 2011. This leads to a stronger trend and a larger number of sites with negative trends, confirming our hypothesis

Highlighted bars represent model versions relevant for this hypothesis

Aim: To identify the drivers behind observed trends in foliar $\delta^{15}N$

Method: A land surface model (QUINCY) with the capacity to represent $\delta^{15}N$ processes, where alternative hypotheses can be tested separately.

Conclusions: Predicted decreases in foliar $\delta^{15}N$ are mainly driven by the effects of elevated atmospheric CO₂ over the last century. However, the magnitude of this trend is much smaller than the observed trend. Including a change in the $\delta^{15}N$ of anthropogenic N deposition in the model partially explains the discrepancy between model and data.



Email: scaldra@bgc-jena.mpg.de

Twitter: @SCaldararu

Website: https://www.bgc-jena.mpg.de/bgi/index.php/People/SilviaCaldararu

We use a land surface model to test these hypotheses, which cannot be done using data only

QUINCY is a novel land surface model with fully coupled C,N,P and water cycles, which has the capacity to represent C and N isotopic processes. <u>Model description</u> Code availability

Model simulations and comparison with data

We run QUINCY at ~400 sites distributed across climate zones and PFTs, for the period 1901-2018, with fully transient climate and CO_2 .

We compare model results with the foliar $\delta^{15}N$ data from Craine et al. 2018, <u>available here</u>.

All values presented here, for both data and model, are residuals of mixed linear regression model accounting for variations in climate and leaf N content. This means that any trends are due only to changes in time and not spatial variations.