

VNIR spectroscopy for assessment of postfire impacts on soil properties using linear and non-linear calibration methods

Hrelja I.¹ Sestak, I.¹, Percin, A.¹, Pereira, P.² Bogunovic, I.¹

¹University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia

² Environmental Management Center, Mykolas Romeris University, Vilnius, Lithuania

Introduction

Wildfires

- high temperatures normally have detrimental impacts on soil properties.
- Increase of soil pH, EC, CaCO₃ immediately post-fire is to be expected

(Inbar et al., 2014)

In low severity wildfires we can expect an increase in soil C content

(Pereira et al., 2017)

 In high severity wildfires decrease of soil C content is observed

(Otero et al., 2015)

Introduction

Visible and near infrared (VNIR) spectroscopy

- non-destructive
- enables simultaneous evaluation of soil properties using hyperspectral data
- Studies that investigated how soil spectroscopy could be used in determining:

Fire severity


(Veraverbeke et al., 2014)

Post-fire soil organic matter content

(Rosero-Vlasova et al., 2016)

Post-fire changes in N, available P, Mg²⁺ and Ca²⁺ content

(Vergnoux et al., 2009)

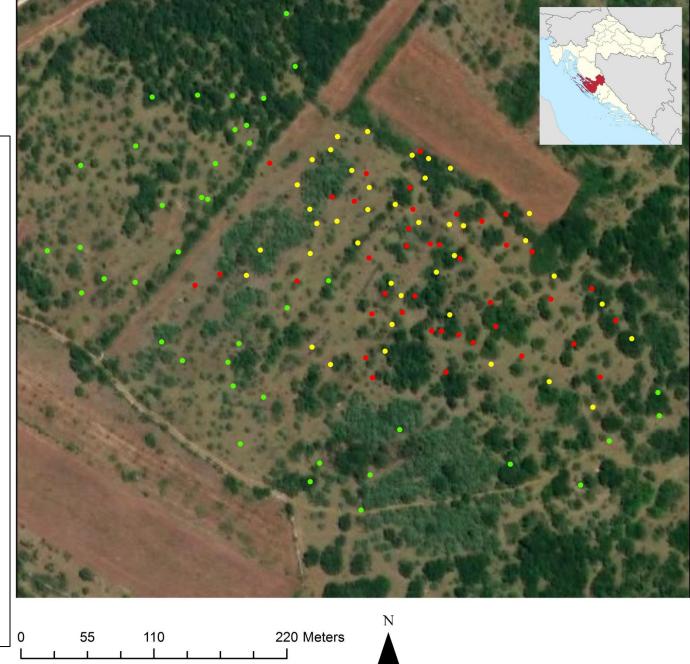
Questions:

- What is the relationship of soil spectral reflectance and soil properties after a wildfire?
- Would a linear or non-linear statistical model be best to estimate the changes after a wildfire?

Objectives:

- 1. Determine the relationship of spectral reflectance and soil properties
- 2. Compare model performance \rightarrow PLSR vs. ANN

Methodology Study site


Zadar County, Croatia

Mediterranean climate

mean rainfall \rightarrow 853.9 mm mean temp. \rightarrow 15.3 °C

Legend

- Control (C)
- Medium severity (MS)
- High severity (HS)

Methodology Study site

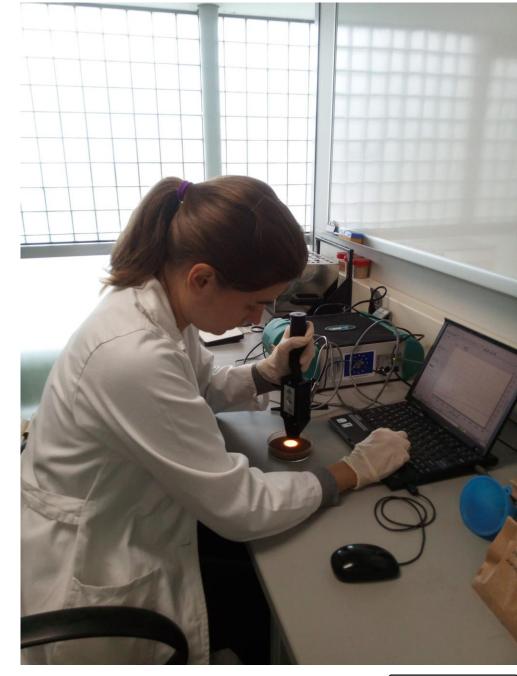
Burned area: ~ 13.5 ha

Soil type: *Terra rosa*

Vegetation: Quercus spp. and Juniperus spp.

VNIR spectroscopy for assessment of post-fire impacts on soil properties us

Methodology Soil sampling


Overall:

- Wildfire occured in August 2019
- Samples taken 2 days post-fire
- N = 120 (0-5 cm)

Methodology Spectral measurements

- **Portable spectroradiometer** *FieldSpec®3 (ASD Inc., Boulder, USA)*
- Manual optical probe
- λ range 350 to 1050 nm
- simultaneous recording
- Each soil sample is described by 700 reflectance variables
- Soil samples → air-dried and sieved, recorded under artificial light

Methodology Laboratory analysis

- **pH electrometrically** pH meter, in H₂O (1:5)
- EC volumetrically

Conductometer (300-1900 µS)

- CaCO₃ volumetrically
 Scheibler calcimeter
- TC dry combustion

Vario Macro CHNS analyzer

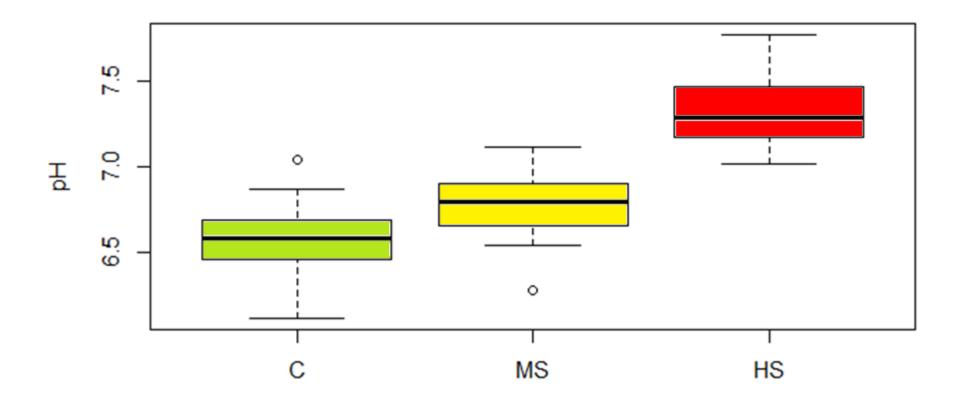
CC

Methodology Multivariate analysis

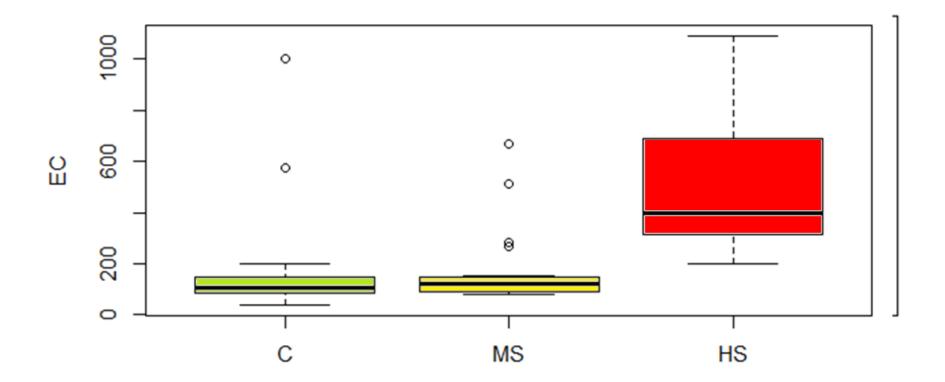
• PLSR \rightarrow linear model

Full spectrum cross-validation

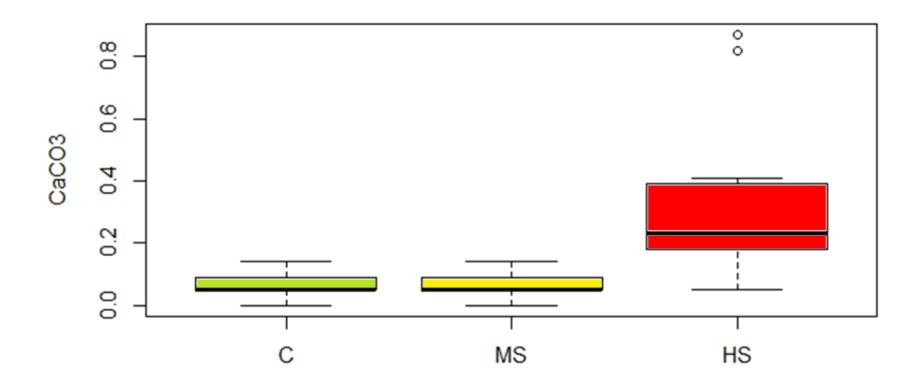
Extracts the relevant information from very large data matrices

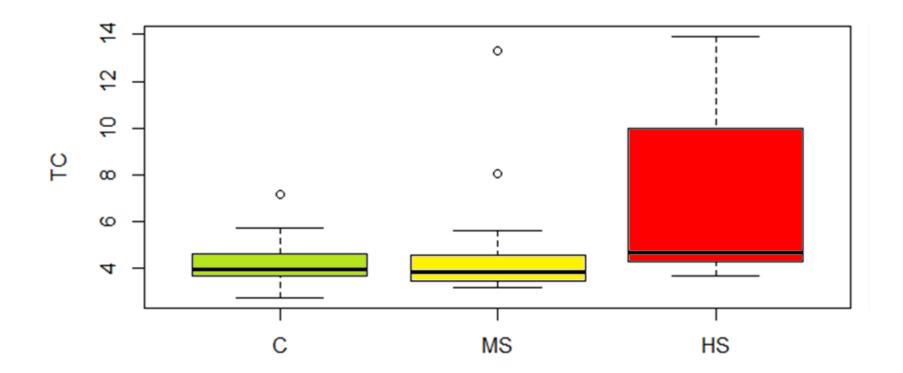

ANN → non-linear model

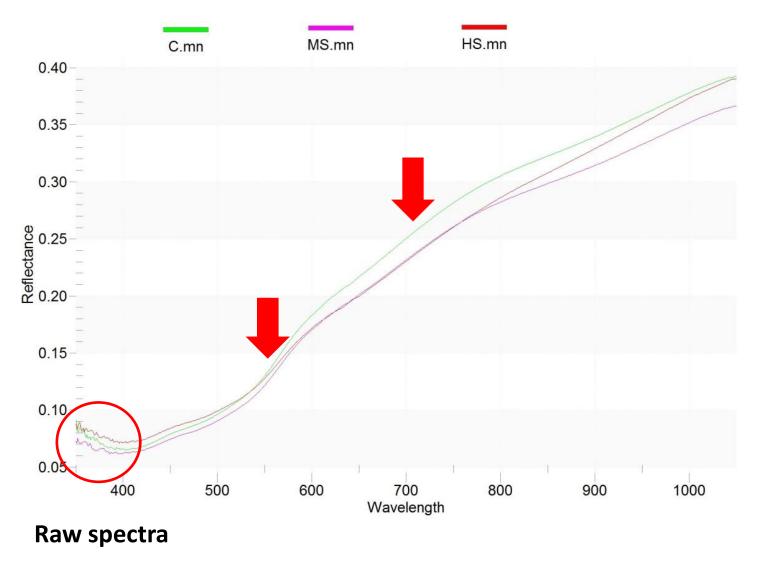
Training algorithms to automatically learn the structure of the data


Describes non-linear relationships between soil spectral signatures and soil property of interest

- **Data smoothing:** Savitzky-Golay (only pH showed improved model performance after smoothing)
- Data transformation: 1st derivative

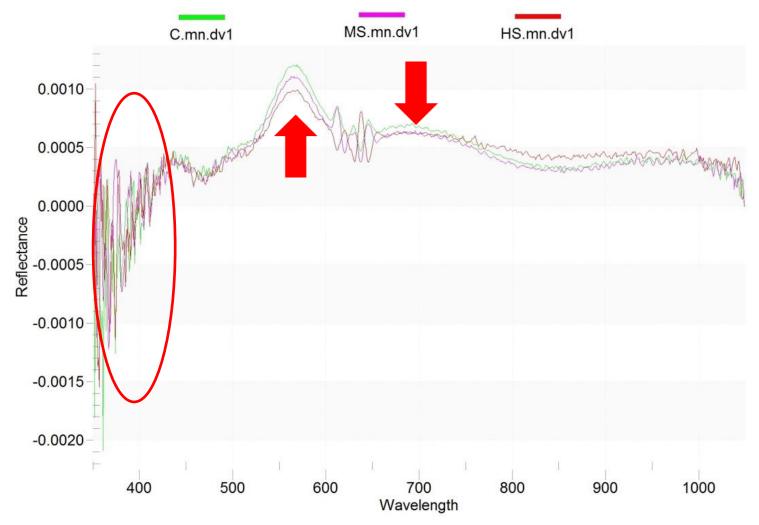






Results

Chemical analysis


Severity	Mean	Stand. Dev.	Minimum	Maximum	Skewness	Kurtosis	CV (%)			
	рН									
С	6.59	0.218	6.12	7.04	-0.160	0.445	3.31			
MS	6.77	0.185	6.28	7.12	-0.768	1.423	2.73			
HS	7.31	0.197	7.02	7.77	0.531	-0.005	2.69			
EC (μS/cm)										
С	174.64	223.85	40.9	1000	3.214	10.589	128.18			
MS	174.72	153.96	82.0	668	2.473	5.803	88.12			
HS	500.85	252.64	199	1089	0.773	-0.241	50.44			
CaCO ₃ (%)										
С	0.06	0.03	0.00	0.14	-0.090	-0.371	50.00			
MS	0.06	0.03	0.00	0.14	0.156	0.075	50.00			
HS	0.33	0.25	0.05	0.87	1.472	1.231	75.76			
TC (%)										
С	4.22	1.05	2.73	7.14	1.237	1.982	24.88			
MS	4.58	2.34	3.16	13.31	3.134	10.738	51.09			
HS	6.63	3.33	3.67	13.90	0.994	-0.484	50.23			

Results Visual evaluation of soil spectra

Results Visual evaluation of soil spectra

Transformed spectra – 1st derivative

Results Model performance

Soil		Calib	ration	Validation		
property	Model -	R ²	RMSEC	R ²	RMSEP	
	PLSR	0.96	0.07	0.81	0.16	
рН	ANN	0.73	0.19	0.69	0.21	
	PLSR	0.69	144.97	0.61	163.48	
EC (µs/cm)	ANN	0.68	145.82	0.63	158.5	
$C_{2}C_{2}$	PLSR	0.79	0.09	0.58	0.12	
CaCO ₃ (%)	ANN	0.89	0.07	0.83	0.08	
TC (0/)	PLSR	0.58	1.67	0.55	1.77	
TC (%)	ANN	0.91	0.93	0.86	0.98	

Conclusion

 In agreement with previous studies: soil pH increased after both medium and high severity wildfire. EC and CaCO₃ increased only where high severity wildfire occured. Unexpectedly, soil TC content increased after high severity fire.

• **C samples showed higher reflectance than MS and HS.** Possibly explained by lower soil pH and TC content.

ANN model captured the link between EC, CaCO₃, and TC soil reflectance spectra more effectively (presumably because of the great variability in the data), while
 PLSR proved to be a more successful model for pH prediction.

Conclusion

Future research:

• Proximal soil sensing is a useful addition to standard laboratory soil analysis, and to satellite and aerial remote sensing methods.

 Next step of the research is to compare super-spectral satellite imagery and existing hyper-spectral data, as well as to monitor the temporal and spatial dynamic of wildfire impact on selected soil properties.

Thank you for your attention!

ihrelja@agr.hr

This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia - SEDCRO"

