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1. Background & aims

3 main mechanisms

of mass loss
(interrelated)

Calving

Submarine Melting

Surface Melting → percolation + melting at bedrock→ subglacial discharge

[e.g. Chu 2014; Beaird et al. 2015]

[e.g. Motyka 2013; Straneo & Heimbach 2013; Cowton et al. 2019]

[e.g. Benn et al. 2007; Nick et al. 2010; How et al. 2019]

Model estimations of Sea Level Rise to the end of century are between 79 – 157 mm [Huss & Hock, 2015],

and point that Tidewater Arctic glaciers might be the largest contributors [Marzeion et al., 2017]

• How different are submarine melt rates resulted 
from fjord-circulation or plume models?

• How this might affect modeled calving rates 
and/or front position changes?

[e.g. Beckman et al. 2019; Slater et al. 2019]

The plume model is widely used to estimate submarine melting 
under future scenarios, but …
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2. Hansbreen-Hansbukta system & data

Surface meltwater 
& ice mélange

Ice velocity 
(stakes)

Fjord temperature 
and salinity profiles
(CTDs)

Hansbreen, around 16 km long, 1.5 km wide and 
100 m thick at the front (50-60 m submerged). 
Hansbukta, 2 km long, 1.5 km wide, 90-20 m deep.
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Glacier and fjord data 
overlap (Apr-Aug 2010)
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3. Methods

2. Simulation of Hansbreen-
Hansbukta system during Apr-Aug 
2010 (20 weeks) using the same 
configuration in both coupled 
models (transient data for boundary 
conditions, subglacial discharge 
fluxes, ice velocities, etc)

3. Comparison between glacier-plume and glacier-fjord
results:

i. Submarine melt rates 
ii. Submarine front shapes from melting
iii. Glacier net stress
iv. Glacier front position

1. Coupling of Glacier-Plume and 
Glacier-Fjord models through 
submarine melting at the ice-ocean 
interface and front position 
changes.
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4. Results: (i) Submarine melt rates

• In both models, submarine melt rates 
showed high sensitivity to the 
intraseasonal evolution of subglacial 
discharge and fjord temperature.

• Max. depth-dependent melt rates of 
the glacier-plume (-fjord) model 
ranged from 0.1 (0.01) m week⁻¹ in 
April up to 16 (16) m week⁻¹ in 
August.

• These maxima occur at depth in the 
glacier-plume model and at mid-
depth in the glacier-fjord model 
(different profiles of submarine 
melting).
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4. Results: (ii) Submarine front shapes from melting

• Glacier-plume and glacier-fjord coupled models show different melt-undercutting front shapes.

• Both models differ in 
vertically-accumulated 
submarine melt rates (up 
to 30 % higher for the 
glacier-plume model).

• Glacier-plume model showed a quasi-linear melt-undercutting 
morphology, whilst a quasi-parabolic front shape resulted from 
the glacier-fjord model. [see Beaird et al. 2019 and Sutherland et al. 2019]
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4. Results: Glacier 
(iii) net stress and 
(iv) front position

• Despite all, both models predicted similar front positions.

• Net stress anomalies near the 
glacier front were detected 
between the two models at the 
end of the summer (higher 
subm. melt rates). 

• The glacier-plume model 
showed higher calving rates.
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[see Ma & Basis 2019]
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5. Conclusions

• The computational cost of the glacier-plume model is 0.02 times that of the 
glacier-fjord model  Glacier-plume model, good tool for projection studies (if 
appropriate constraints of subglacial discharge fluxes and ambient fjord 
temperatures are applied).

• Glacier-plume and glacier-fjord coupled models differ in vertically-
accumulated submarine melt rates (up to 30 % higher for the glacier-plume 
model) and show different melt-undercutting front shapes, which have an 
influence on the net stress fields near the glacier front.

• The quasi-linear melt-undercutting morphology exhibited by the glacier-plume 
model promotes higher calving rates than the quasi-parabolic front shape 
resulting from the glacier-fjord model, although both models predict similar 
front positions under best-fit scenarios.
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