

Non-monotonic relationship of sun-induced fluorescence to photosynthesis

Sebastian Wieneke

M. Balzarolo, H. Asard, H. AbdElgawad, J. Peñuelas, U. Rascher, A. Ven, M. S. Verlinden, I. A. Janssens & S. Vicca

EGU 2020 BG3.33

Energy balance of the photosynthetic light reaction

0.5-2%

 Φ_F

From actively induced fluorescence we know that $\Phi_F = a \Phi_P$ changes with NPQ

17.5-98%

 $+ \Phi_{NPQ} +$

0-82%

 Φ_P

- APAR = absorbed photosynthetic active radiation
- Φ_F = fluorescence yield
- Φ_P = photochemical yield
- Φ_{NPQ} = non-photochemical yield

Research question:

- 1. Can we find the shown non-monotonic behavior between Φ_P , Φ_{NPQ} and Φ_F with passive fluorescence measurement techniques?
- 2. If so, how can we estimate photosynthesis from fluorescence under increasing NPQ?

Sun induced fluorescence at the leaf Phosphorous gradient experiment 2017 (*Zea mays*)

erc

European Research Council

Label	P treatment (kg P ha ⁻¹)	Arbuscular Mycorrhizal funghi	Replicates
P4	20	Yes	5
P4S	20	No AMF	5
P3	10	Yes	5
P2	5	Yes	5
P1	2.5	Yes	5
P1S	2.5	No AMF	5

- Two measurement campaigns (27 DAP & 57 DAP)
- Key Parameters: ETR (Licor 6400XT), FY (FluoWat & ASD)
- 10 leaves per treatment and campaign (104 leaf samples)

P2

P1

P4S

P1S

0

P4

P3

Decrease in photosynthetic activity

We successfully created a strong gradient in photosynthesis

Non-monotonic relationship of FY to Φ_P

We found a relationship between FY and Φ_{P} which is in agreement with the concept model

 Φ_P

Non-monotonic relationship of FY to Φ_{P}

We found a relationship between FY and Φ_P which is in agreement with the concept model How to model photosynthesis from FY?

= photochemical yield

Source: © Wieneke et al. All rights reserved.

Stepwise model:

- 1) Local min and max from first derivative of polynomial
- 2) Local min and max used to decompose polynomial into three linear models
- 3) Pigment corrected PRI (cPRI) used to classify the three stress phases of FY

Stepwise model:

- 1) Local min and max from first derivative of polynomial
- 2) Local min and max used to decompose polynomial into three linear models
- 3) Pigment corrected PRI (cPRI) used to classify the three stress phases of FY
- 4) ETR is estimated from FY by using the according linear model

The stepwise model is highly sensitive towards stress phase detection

- ightarrow How reliable is pigment corrected PRI in detecting stress phases
- ightarrow Monte Carlo analysis showed that uncertainties in cPRI result in strong Bias

6

lowest P no AMF

High P no AMF

Med. P 🔵

Low P 😑

lowest P

$$F_{\uparrow \text{ratio}} = \frac{F_{\uparrow 680}}{F_{\uparrow 740}}$$

- P-limitation affects PSII stronger than PSI (Carstensen et al., 2018)
- The first fluorescence peak (F₆₈₀) consists mainly of emission by PSII
- The second fluorescence peak (F₇₄₀) consists of emission by PSII and PSI
 - → With increasing P limitation F_{680} decreases faster than F_{740}
 - → With increasing P limitation the F_{ratio} will decrease

Problem:

 \rightarrow F₆₈₀ is strongly affected by reabsorption effects

$$F_{\uparrow \text{ratio}} = \frac{F_{\uparrow 680}}{F_{\uparrow 740}}$$

With increasing P-limitation:

- \rightarrow Chlorophyll content decreases
- \rightarrow Reabsorption of F₆₈₀ decreases

 \rightarrow F_{ratio} increases

We corrected for the reduced reabsorption effect by using an empirical correction factor derived from the transmittance at 680nm, the total chlorophyll content and the rededge chlorophyll index

 ${\rm F}_{\rm ratio}\,$ = ratio of the two fluorescence peaks

- ETR = Electron Transport Rate
- TR_{680} = Transmittance at 680 nm

- ETR = Electron Transport Rate
- TR_{680} = Transmittance at 680 nm
- tC = total Chlorophyll content

- More robust than the FY/cPRI stepwise model
- APAR is not needed
- But how well does it work at canopy?

Thank you and stay healthy!

ACTIONS

P

MARIE CURIE