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Introduction
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APAR — CDP + CI)NPQ + CI)F
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* Can be measured at the leaf
* Estimation by RS proxies
(still) not feasible
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PAR = photosynthetic active radiation

fAPAR = fraction of absorbed PAR Dp = fluorescence yield

R = reflectance O = photochemical yield

T = transmittance Dppg = non-photochemical yield
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Not a problem if &y = a®dp
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PAR = photosynthetic active radiation

fAPAR = fraction of absorbed PAR Dp = fluorescence yield

R = reflectance O = photochemical yield

T = transmittance Dppg = non-photochemical yield




Energy balance of the photosynthetic light reaction
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= absorbed photosynthetic active radiation
= fluorescence yield

= photochemical yield

= non-photochemical yield
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Research question:

1. Can we find the shown non-monotonic behavior
between ®p, Py poand p with passive fluorescence
measurement techniques?

2. If so, how can we estimate photosynthesis from
fluorescence under increasing NPQ?
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Sun induced fluorescence at the leaf
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* Two measurement campaigns (27 DAP & 57 DAP)
» Key Parameters: ETR (Licor 6400XT), FY (FluoWat & ASD)

* 10 leaves per treatment and campaign (104 leaf samples)




Phosphorous gradient experiment 2017 (Zea mays)

* P limitation inhibits ETRII in the early growing stage

Pasteurited soil
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Illustrated by A.Bastos
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Phosphorous gradient experiment 2017 (Zea mays)

* P limitation inhibits ETRII in the early growing stage
* Plants under P-limitation invested into root systems

Pasteurized soil
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Illustrated by A.Bastos
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Phosphorous gradient experiment 2017 (Zea mays)

* In late growing stage the plants recover for P-limitation
- Access of additional nutrients from soil

P4® Pasteurized soil
Illustrated by A.Bastos
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Phosphorous gradient experiment 2017 (Zea mays)

* In late growing stage the plants recover for P-limitation
> Access of additional nutrients from soil
* |f AMF is not present no compensation for P-limitation

Pasteurized soil

P1@ PS¢ Pi1s¥¢

Illustrated by A.Bastos
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Phosphorous gradient experiment 2017 (Zea mays)

P4@®

Illustrated by A.Bastos

F Pasteurized soil
P1@® PAS¥ Pi1s¥

Increase in P limitation

Decrease in photosynthetic activity

We successfully created a strong gradient in photosynthesis
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Non-monotonic relationship of FY to @,

Concept model based on active Fs research
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We found a relationship between FY and @, which is in agreement
with the concept model

FY = fluorescence yield
O = photochemical yield




Non-monotonic relationship of FY to @,

Concept model based on active Fs research
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We found a relationship between FY and @, which is in agreement
with the concept model
How to model photosynthesis from FY?

FY = fluorescence yield
O = photochemical yield




Estimating ETR by FY and pigment corrected PRI

R?= 0.93*** rRMSE = 6.9
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Estimating ETR by FY and pigment corrected PRI
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Estimating ETR by FY and pigment corrected PRI
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Estimating ETR by FY and pigment corrected PRI

R?= 0.93** rRMSE = 6.9
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The stepwise model is highly sensitive towards stress phase detection

- How reliable is pigment corrected PRI in detecting stress phases
—> Monte Carlo analysis showed that uncertainties in cPRI result in strong Bias
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Estimating ETR by cF

ratio

2.5 P * P-limitation affects PSIl stronger than PSI
' = (Carstensen et al., 2018)
' \ * The first fluorescence peak (F.q,) consists
! \ mainly of emission by PSII
The second fluorescence peak (F,,,) consists of
emission by PSIl and PSI
—> With increasing P limitation Fg, decreases
/ " faster than F,,,
e \ —> With increasing P limitation the F

| | |
650 700 750 800 decrease
wavelength (nm)

F (mW m2sr-' nm-)
= g N
(@) (&) o
| | |
]
-
-
[ ]

O
(&)
|
~
-

ratio WI"

Source: ESA, 2015 Problem:
= Feqo is strongly affected by reabsorption effects
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Estimating ETR by cF
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FT680

Frratio = F;
740

F..tio = ratio of the two fluorescence peaks
ETR = Electron Transport Rate

TRggo = Transmittance at 680 nm

tC  =total Chlorophyll content

ratio

With increasing P-limitation:

- Chlorophyll content decreases
—> Reabsorption of F,, decreases
- F,..,, increases

We corrected for the reduced
reabsorption effect by using an
empirical correction factor derived
from the transmittance at 680nm, the
total chlorophyll content and the red-
edge chlorophyll index




Estimating ETR by cF

ratio
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ETR = Electron Transport Rate
TRggo = Transmittance at 680 nm
tC  =total Chlorophyll content




Estimating ETR by cF
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* More robust than the FY/cPRI stepwise model
 APAR is not needed
* But how well does it work at canopy?
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