

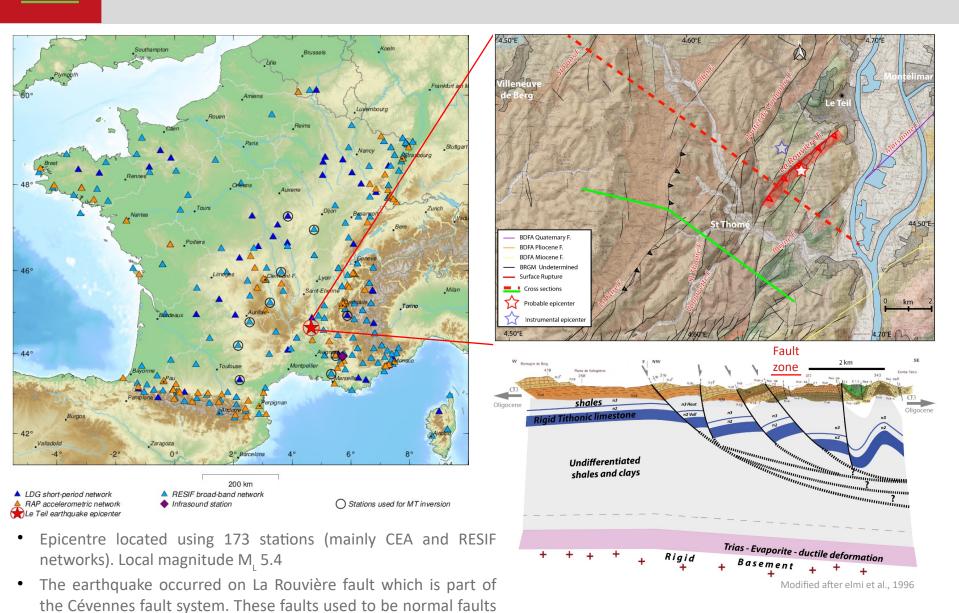
Full characterization of the M_L 5.4 2019/11/11 Le Teil earthquake in France based on a multitechnology approach

DE LA RECHERCHE À L'INDUSTRIE

EGU 2020 – EARTHQUAKES AND ACTIVE TECTONICS IN REGIONS OF SLOW LITHOSPHERIC DEFORMATION

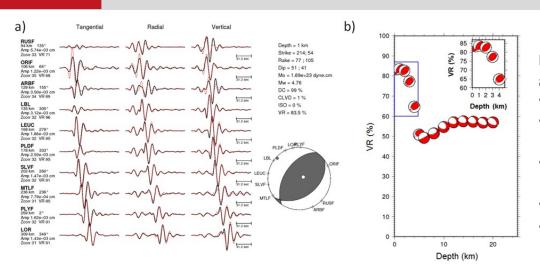
HTTPS://DOI.ORG/10.5194/EGUSPHERE-EGU2020-9785

Amaury Vallage, L. Bollinger, Y. Cano, J. Champenois, C. Duverger, B. Hernandez, P. Herry, A. Le Pichon, C. Listowski, G. Mazet-Roux, M. Menager, S. Merrer, B. Pinel-Puyssegur, R. Rusch, O. Sèbe, J. Vergoz, and A. Guilhem Trilla


amaury.vallage@cea.fr

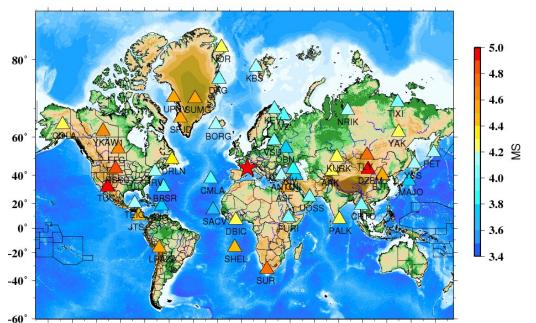
CEA team

LE TEIL EARTHQUAKE – LOCALIZATION & CONTEXT


shareEGU2020

and accommodated extension during Oligocene.

CEA team

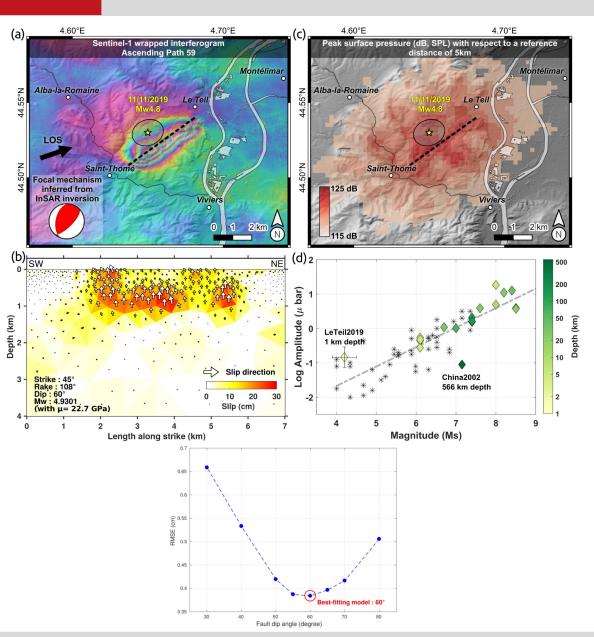

LE TEIL EARTHQUAKE – SOURCE SEISMOLOGICAL CHARACTERISTICS

Full waveform inversion performed on 10 broadband CEA and RESIF stations

- Maximum variance reduction: 1 km depth
- Focal mechanism mainly reverse with a small strike-slip component
- Strike (N54°) in agreement with La Rouvière fault local azimuth (N46°)
- Best dip: 41°
- Moment magnitude M_w=4.77

 \rightarrow M_s: 4.03±0.17 (Scordilis et al., 2006)

 $-160^{\circ}-140^{\circ}-120^{\circ}-100^{\circ}-80^{\circ}-60^{\circ}-40^{\circ}-20^{\circ}$ 0° 20° 40° 60° 80° 100° 120° 140° 160°


Surface-wave magnitude is commonly used for French seismic hazard assessment

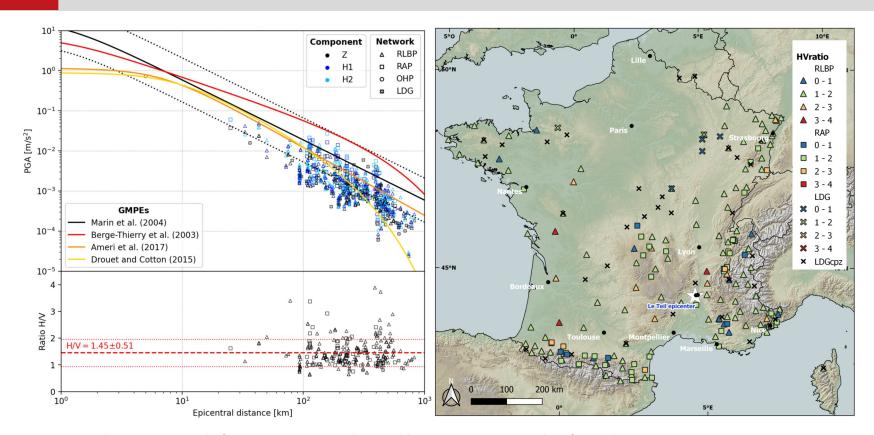
- Vanek et al., (1962) formula,
- 20-s period filtered waveforms recorded by 48 stations distributed between 20° and 90° around the epicentre
- $M_c = 4.2 \pm 0.3$

shareEGU2020

LE TEIL EARTHQUAKE – INSAR AND INFRASOUND CHARACTERISTICS

SAR data

- Four Sentinel-1 tracks are used (2x ascending and 2x descending)
- Phase discontinuity suggests surface rupture
- Inversion for fault's dip and displacement with fixed strike
 - Best dip: 60°
 - Maximum displacement ~30 cm at 1 km depth
 - 10 cm of displacement up to the surface
 - Inverted focal mechanism in agreement with seismological inversion
- Moment magnitude M_w=4.93


 \rightarrow M_s: 4.27±0.17 (Scordilis et al., 2006)

Infrasound data

- 0.035 Pa infrasound peak pressure measured 107 km away from the epicentre at the Haute-Provence Observatory (OHP)
- Ground-to-air coupling and peak surface pressure (PSP) regions coincide with surface deformation measured by InSAR
- Infrasound back-projection from OHP gives a pressure value of 120 ± 5 dB at a reference distance of 5 km from the epicentre
- Infrasound amplitude, corrected for propagation effects, is primarily driven by seismic magnitude and focal depth

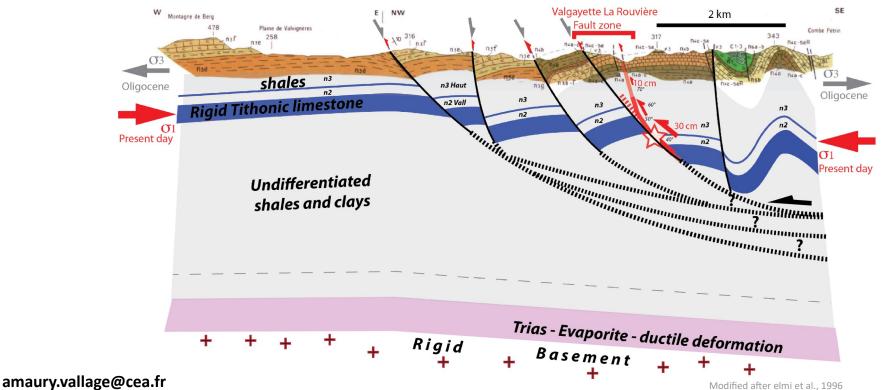
LE TEIL EARTHQUAKE - GROUND MOTION PROPAGATION

PGA measured on 802 records from 290 stations, located between 0 to 1000 km from the epicentre:

- French permanent strong motion network (RESIF-RAP) 3 components accelerometers
- French permanent broadband network (RESIF-RLBP) 3 components velocimeters (converted to acceleration)
- CEA-LDG network 1 and 3 components velocimeters (converted to acceleration)
- Infrasound back projection: 120 \pm 5 dB at 5 km distance \rightarrow 0.4-1.1 m.s⁻²

H/V ratios calculated for all 3-component stations

• Mean H/V = 1.49 ± 0.54


shareEGU2020

LE TEIL EARTHQUAKE – TAKE HOME MESSAGES

- The 11/11/19 Le Teil earthquake is very shallow and it ruptured the surface despite its rather small magnitude
- Seismic, geodetic and infrasound data helped characterizing the event. Magnitude differences probably reflect the processes at work ($M_1=5.4$, $M_W^{\text{seismo}}=4.8$, $M_W^{\text{geodesy}}=4.9$, $M_s=4.2$)
- All the technologies agree on the the origin of the earthquake: La Rouvière fault. The earthquake was reverse but took place on older, pre-existing, normal structures

A. Vallage, L. Bollinger, Y. Cano, J. Champenois, C. Duverger, B. Hernandez, P. Herry, A. Le Pichon, C. Listowski, G. Mazet-Roux, M. Menager, S. Merrer, B. Pinel-Puyssegur, R. Rusch, O. Sèbe, J. Vergoz, and A. Guilhem Trilla, (in prep, 2020)

