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Motivation: 

• CH4 mixing ratios are on a sharp rise. 

• Secondary chemical effects of CH4 are crucial to understand the 

total climate effects of CH4. 

• Strongly enhanced mixing ratios sharpen the knowledge on 

potential climate impacts. 



Experimental set-up 
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Simulations:  Simulation ID Lower boundary condition of CH4 

REF 1.8 ppmv (reference 2010) 

S2  2x REF fSST  3.6 ppmv* 

S5  5x REF fSST  9.0 ppmv 

• State of the art chemistry-climate model EMAC (Jöckel et al. 2016) 

• Lower boundary condition of CH4 nudged by Newtonian relaxation 

• Time-slice equilibrium simulation of 20 years 

• Prescribed oceanic conditions (sea surface temperature and sea ice conc.) 

 mimicking present day (2010) tropospheric temperatures, changes are largely 

suppressed 

 focus on rapid (chemical driven) adjustments 

For the complete picture including the slow climate feedback please consider 

also the follow up study presented in this session:  

Investigation of strongly enhanced methane Part II: Slow climate feedbacks 

* according to RCP 8.5 this value will be reached about 2080 



OH 

Impact on tropospheric oxidation capacity 
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tropospheric CH4 lifetime 

Enhanced CH4 mixing ratios lead to a 

reduction in tropospheric OH and a 

prolongation of CH4 lifetime. 

Left: 

Difference in OH mixing ratio 

in percent [%] between REF 

and sensitivity simulations S2 

(upper) and S5 (lower).  

 

Right: 

Tropospheric CH4 lifetime 

with respect to the applied 

scaling factor of the lower 

boundary condition: 1.0 

(REF), 2.0 (S2) and 5.0 (S5). 

The lifetime is calculated with 

respect to the tropospheric 

OH sink (see supplementary 

material). 



OH 

Non-linear stratospheric CH4 depletion  
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CH4 

Left: 

Non-linear stratospheric CH4 

depletion. We substracted 

from the CH4 mixing ratio in 

the sensitivity simulations the 

mixing ratio of the reference 

multiplied with the respective 

factor (2 for S2 and 5 for S5). 

The blue areas show where 

relatively more CH4 is 

oxidized in the sensitivity 

simulation than in the 

reference simulation. 

 

Right: 

Difference in OH mixing ratio 

in percent [%] between REF 

and sensitivity simulations S2 

(upper) and S5 (lower).  



OH 

Non-linear stratospheric CH4 depletion  
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CH4 

Areas where more 

CH4 is oxidized than 

linearily expected, 

correspond to areas 

with increased OH 

mixing ratios 



Impact on stratospheric chemistry 
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O3 H2O Temperature 

Left: Difference in H2O mixing ratio in percent. 

Middle: Difference in temperature in K. 

Right: Difference in O3 mixing ratio in percent. 



Impact on stratospheric chemistry 
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O3 H2O Temperature 

Strongly increased 

stratospheric water 

vapor induced by 

CH4 oxidation. 

Left: Difference in H2O mixing ratio in percent. 

Middle: Difference in temperature in K. 

Right: Difference in O3 mixing ratio in percent. 



Impact on stratospheric chemistry 
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O3 H2O Temperature 

Stratospheric cooling 

mostly due to the 

increased burden in 

stratospheric water 

vapor. 

Left: Difference in H2O mixing ratio in percent. 

Middle: Difference in temperature in K. 

Right: Difference in O3 mixing ratio in percent. 



Impact on stratospheric chemistry 
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O3 H2O Temperature 

Stratospheric cooling 

and the 

corresponding favor 

of polar stratospheric 

clouds strengthens  

the ozone depletion 

in Antarctic spring. 

Tropospheric O3 and 

O3  in the middle 

stratosphere 

increases. 

 Overall increase 

in total column O3. 

Left: Difference in H2O mixing ratio in percent. 

Middle: Difference in temperature in K. 

Right: Difference in O3 mixing ratio in percent. 



Estimates from other studies:  

• 0.48±0.1 W m −2  [IPCC, 2013] (+1100 ppbv) 

• 1 W m −2  [HadGEM2, Forster 2016, Smith et al. 2018] (+3534 ppbv) 

• 1.4 W m −2  [CESM1, Forster 2016, Smith et al. 2018] (+3534 ppbv) 

 

Radiative impact 
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Simulation CH4 SWV O3 Chem. 
effect 

Phys. 
effect 

Total 

S2* (+1800 ppbv) 0.23 0.15 0.27 0.66 0.03 0.69 

S5* (+7200 ppbv) 0.51 0.55 0.76 1.82 -0.03 1.79 

The solitary radiative impact of CH4 is comparably small, which is found in 

other studies using ECHAM5 as well (Lohmann et al. 2010). 

Solitary radiative impacts in W m−2: 



• First of its kind study investigating the rapid adjustments of CH4 in a 

chemistry-climate-model 

• Strong impact on the oxidation capacity of the troposphere (influences air 

quality and mitigation plans) 

• Substantial rise in stratospheric water vapor (SWV) 

• Overall increase in total O3 column but enhanced O3 depletion in the Antarctic 

lower stratosphere 

• Radiative impacts of 0.69 W m-2 (2xCH4) and 1.79 W m-2 (5xCH4), respectively, 

predominated by chemical induced radiative effects from SWV and O3 

Conclusions 
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Stratospheric adjustments in temperature expected by the pertubation 

of the radiative active trace gas. 

Adjusted stratospheric temperature 
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Stratospheric adjustments in temperature expected by the pertubation 

of the radiative active trace gas. 

Adjusted stratospheric temperature 
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Tropospheric CH4 lifetime: 
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