Predicting heliospheric propagation of CMEs with probabilistic Drag-Based Ensemble Model (DBEM)

J. Čalogović¹, M. Dumbović¹, B. Vršnak¹, D. Sudar¹, M. Temmer², A. Veronig²

- 1. Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia
- 2. Institute of Physics, University of Graz, Austria

Drag-Based Model (DBM)

Cargill et al., 1996; Vršnak and Žic, 2007; Vršnak et al. 2013

 Beyond about 20 solar radii the MHD "aerodynamic" drag (a_d) caused by the interaction of CME with solar wind, becomes the dominant force

$$a = a_L - g + a_d$$
 $a_d = -\gamma(v-w)|v-w|$ Equation of motion

- CME dynamics is governed by interaction with (ambient) solar wind (w)
 - fast CME (v > w) → deceleration
 - slow CME (v < w) → acceleration
- Drag parameter (γ) depends on characteristics of both CME and solar wind – the drag is larger for broader, low-mass CMEs in a high-density (slow) solar wind
- If w and γ constant there is analytical solution

Drag-Based Model (DBM)

- Simple analytical model for heliospheric propagation of CMEs to predict the arrival time and speed of CME at any given target in the solar system
- Uses CME cone geometry with "flattening" (leading edge of CME deforms gradually with time where CME flanks move faster than CME apex)

Advantages

- simple and robust
- very fast (one run << 1 sec) compared to numerical MHD models (e.g. ENLIL)

Disadvantages

• doesn't give the best results in complex heliospheric environment (eg. CME-CME interactions, w and γ aren't constant)

Ensemble modelling

Multiple DBM model runs (DBEM)

Set of results

allows to calculate the confidence intervals of arrival times and impact speed (parameter uncertainties are quantified)

DBEM - main points

- Offers probabilistic forecasting of CME hit chance, transit time and arrival speed for different targets (planets and satellites) in solar system
- Reliable and simple model (written in Python)
- Runs very fast (more than 1000 DBM runs per sec on a single CPU)
- Comparisons show that ENLIL and DBEMv1 perform similarly
- Fast CMEs predicted to arrive too early for both DBEM and ENLIL
- Suitable as on-line (web) forecasting tool: DBEMv25 implemented in ESA Space Situational Awareness (SSA) portal (http://swe.ssa.esa.int/heliospheric-weather)

c) prediction errors for TT (h)	DBEM	ENLIL
mean error (ME)	-9.7	-6.1
mean absolute error (MAE)	14.3	12.8
root mean square error $(RMSE)$	16.7	14.4

Dumbović, Čalogović, Vršnak et al., ApJ, 2018

DBEMv2 (version 2) - input parameters

- For all 6 input parameters (CME time, starting speed of CME, drag parameter, solar wind speed, CME's angular half-width, longitude of CME source region) random values are generated in a range input ± uncertainty (3 σ) following a normal (Gaussian) distribution
- when compared to observations DBEMv2
 performs slightly better than DBEMv1 with
 synthetic measurements (described in Dumbović
 et al., 2018)

Advantages:

- input distributions better represented than in DBEMy1
- converges to stable results much faster than method with synthetic measurements
- allows lower number of DBM runs faster
- user can choose the exact number of DBEM runs

Disadvantages:

 due to random input, it produces every time slightly different results - differences converge with increasing number of runs (differences are negligible for >10 000 runs)

DBEMv2 results

- More accurate hit/miss ratio due to better representation of normal distribution in uncertainty range
- Provides statistics (mean, min, max, StDev, CI) for all calculated parameters
- User can download all results in a zip file
- Integrated in ESA SSA portal as operational forecasting tool in the frame of the ESA Expert Service Group for Solar & Heliospheric Weather

http://swe.ssa.esa.int/heliospheric-weather

DBEMv25 - some recent improvements

- Implementation of proper target movement (e.g. planets and satellites including Earth) during CME propagation (transit)
- Completely new routine for transit time (TT) calculation in DBM
- New ephemerides data employed (various new targets can be easily added - JPL's HORIZONS system

https://ssd.jpl.nasa.gov/horizons.cgi)

 Parallelization of code and multi-CPU calculation support (e.g. calculates 100 000 DBM runs in less than 6 sec on 30/48 CPUs -Graz server)

- Added new targets (all planets, STEREO A & B, Solar Orbiter, Parker Solar Probe...)
- Some bug fixes

Development of DBEMv3

- Based on DBEMv25
- Complete integration of DBM web tool into DBEM together with DBM CME geometry & kinematic plot visualisations
- Graduated Cylindrical Shell (GCS) model option calculates CME angular width from alpha, kappa, tilt (GCS parameters)

Animation info

Date: 17 Jan 2020 Time: 11:00 h Transit time: 0.0 h Speed, v: 1282km/s Distance: 0.07 AU

DBM results

CME arrival (at Mars) Date: 20 Ian 2020 Time: 07:44 h Transit time: 68.74 h Speed at target: 722 km/s Distance (target): 1.57 AU

Input parameters CME date: 17 Jan 2020 CME time: 11:00 h Drag, v: 0.1 ×10⁻⁷km⁻¹ SW speed, w: 450 km/s Radial dist., Ro: 20 rsun CME init. speed, vo: 1600 km/s CME half-width, \(\lambda\): 45 deg CME long., ϕ_{CME} : 70 deg Target: Mars

Input parameters

CME date & time: 17 Ian 2020 11:00 h

Drag parameter, y: $0.1 \times 10^{-7} km^{-1}$ | Solar wind speed, w: 450 km/s | Radial distance, R_0 : 20 r_{sun} CME initial speed, v_0 : 1600 km/s | CME half-width, λ : 45 deg | CME longitude, ϕ_{CME} : 70 deg | Target: Mars

Convergence of DBEMv25 results

Based on 20 DBEM simulations with identical parameters

DBEMv25 evaluation with Richardson & Cane CME list (146 events)

DBEMv25 input parameters

- R0 = 20 Rs
- Number of DBM runs: 50 000
- CME start time: ± 30 min
- CME initial speed, v0: ± 10%
- CME half-width: ± 30 deg
- CME longitude: ± 10 deg
- Solar wind speed: 450 ± 50 km/s
- Gamma:
 - 0-600 km/s: 0.5 ± 0.1
 - 600-1000 km/s: 0.2 ± 0.075
 - >1000 km/s: 0.1 ± 0.05

DBEMv25 evaluation (146 events) Transit Time, TT

Prediction error in Transit Time, dTT

- Mean error: 11.3 h
- Mean absolute error: 17.3 h
- Max underestimated value: -29.9 h
- Max overestimated value: 61.1 h
- 50% events (50th percentile) dTT < 13.9 h
- 70% events (70th percentile)
 dTT < 22.9 h
- For slow CMEs TT is overestimated
- For fast CMEs TT is underestimated

DBEMv25 evaluation (146 events) arrival speed, v_{tar}

Prediction error in arrival speed, dvtar

- Mean error: -30.3 km/s
- Mean absolute error: 139.3 km/s
- Max underestimated value: -746 km/s
- Max overestimated value: 695 km/s
- 50% events (50th percentile) dv < 102 km/s
- 70% events (70th percentile) dv < 162 km/s
- For slow CMEs v_{tar} is underestimated
- For fast CMEs v_{tar} is overestimated

DBEMv25 evaluation (146 events)

prediction dependence of dTT & dv_{tar} on CME launch speed, v₀

error in Transit Time, dTT

error in arrival speed, dvtar

Conclusions

- Very fast (up to 20 000 runs per sec), reliable and simple model
- Suited for a fast real-time space-weather forecasting
- Comparisons with numerical MHD models (ENLIL) show good accuracy of DBM at very low computational cost
- DBM performs better during the solar minimum than in the solar maximum, due to the complex heliospheric environment (eg. CME-CME interaction)
- DBEM can provide important information such as confidence intervals of CME arrival time and impact speed related to the input errors (observations)

