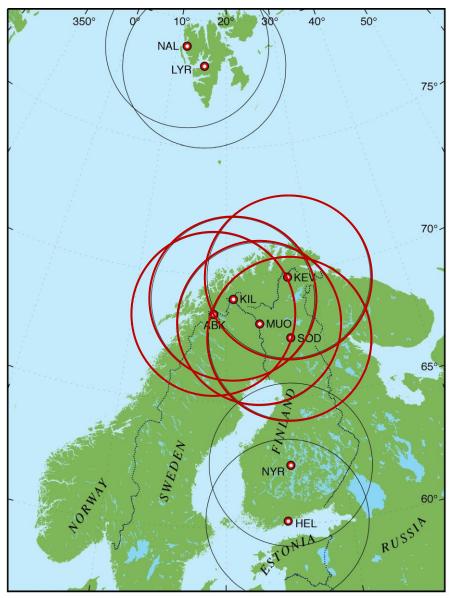
EGU2020-9851 D2962

Statistical magnetospheric location of auroral omega bands obtained by empirical magnetic field models

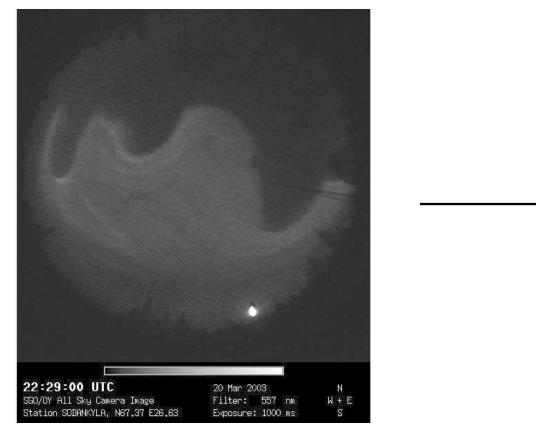
<u>Varvara Andreeva</u>, Sergey Apatenkov, Evgeny Gordeev (*SPBU, St. Petersburg, Russia*), Noora Partamies (*UNIS, Longyearbyen, Norway*), and Kirsti Kauristie (*FMI, Helsinki, Finland*)

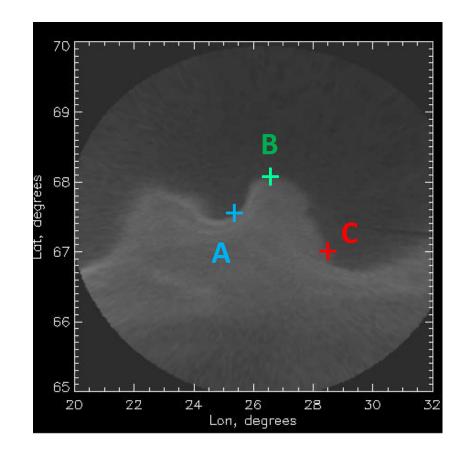

- Omega bands are curved aurora forms, appearing as rows of inverted Greek letter Ω drifting eastward
- Their magnetospheric signatures and sources are poorly understood due to a small number of conjugated spacecraft observations
- The goal of the study is to find a characteristic magnetospheric magnetic field configuration corresponding to this type of aurora on the basis of an empirical model and the list of omega bands observed in the Fennoscandian Lapland

Data

- The list of omega bands observed in the Fennoscandian Lapland in the period 1997-2007 (*Partamies et al.*, 2017)
- Corresponding MIRACLE all-sky camera observations
- ASC stations coordinates in MAG system (calculated for 2007):

Abbr.	Name	MLat, ^o	Long, ^o
ABK	Abisko	66.1	114.6
KEV	Kevo	66.1	122.6
KIL	Kilpisjärvi	66.4	117.0
MUO	Muonio	65.0	118.1
SOD	Sodankylä	64.0	119.8

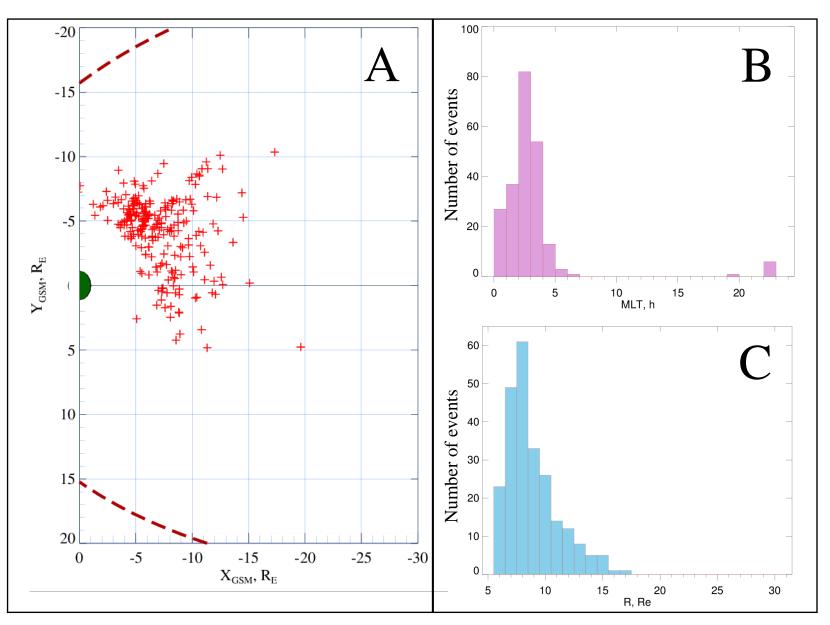


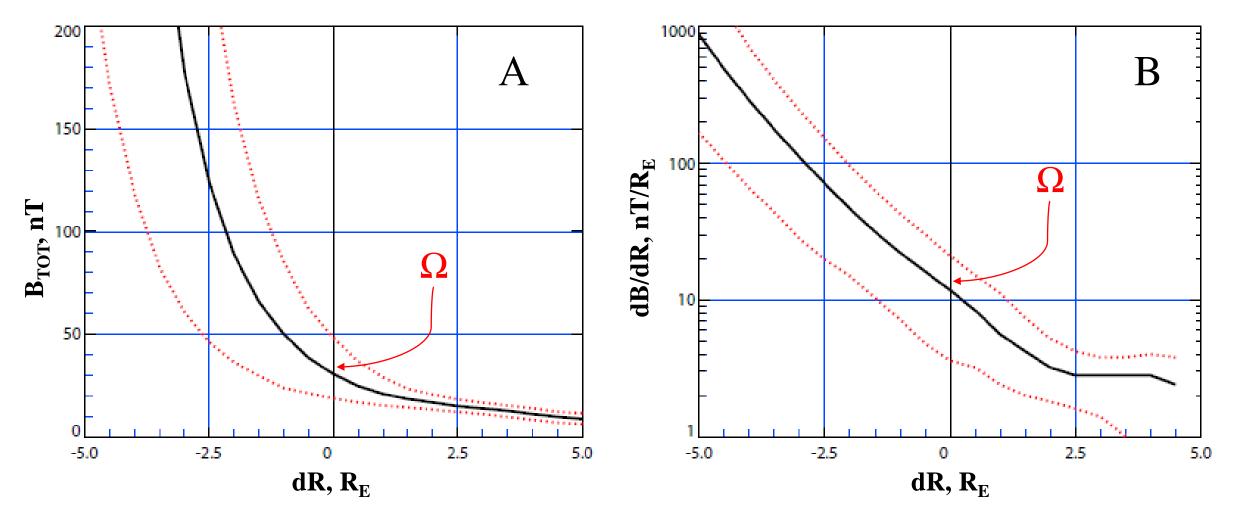

February 2013

From https://space.fmi.fi/MIRACLE/ASC/

Data

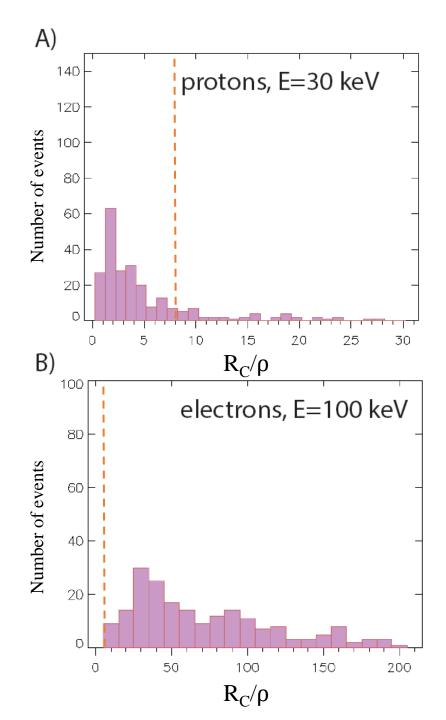
- Magnetic field line tracing: IGRF-12 and the empirical model TA16 (Tsyganenko&Andreeva, 2016)
- TA16 input parameters: : Pdyn, Sym-H, N index (Newell et al., 2007), IMF By
- Footpoints for magnetic field line tracing:




(left) ASC image of Ω-structure, Sodankylä, 20.03.2003; (right) its projection in GEO coordinates at 110 km

Mapping results

- 244 events from the original list
- (A) Ω-projections in GSM equatorial plane
- (B)&(C): occurrence vs MLT and radial distance (Re)
- 90% of events are within 2-4 MLT and R~6.0-13.5 Re
- Maximum at R=8 Re
- Results are in agreement with previously reported case-studies


Magnetospheric magnetic field configuration

Superposed **B(R)** [left] and |dB/dR|(R) [right] profiles in the vicinity ±5 Re of omegaband projection. Zero-epoch dR=0 corresponds to the omega projection

Magnetospheric magnetic field configuration

- Isotropic boundary algorithm (IBA) method to evaluate the magnetic field configuration in the tail (Sergeev et al., 1993)
- **Isotropic boundary:** $R_C/\rho=8$ ---- R_C – the curvature radius of the field line, ρ – the particle gyroradius
- In the vicinity of omega-band possible source: a chaotic motion of 30-keV energetic protons and adiabatic motion of 100-keV electrons
- => stretched magnetic field lines, but the tail current sheet is rather thick

Summary

- The first statistical study of the omega-bands projections using the large set of the MIRACLE ASC observations and new empirical magnetic field model TA16
- It is demonstrated that 90% of the omega bands map to between 6-13.5 Re (occurrence max at ~8 Re) => region, where rapid flows stop (occurrence rate of RFTs drop at radial distances 10-15 Re) (Schödel et al., 2001)
- Superposed radial profiles of the magnetic field and radial gradient in the tail are calculated => a magnetospheric source of Ω is located in the transition region between the tail-like and dipolar fields
- In this region : a chaotic motion of 30-keV energetic protons and adiabatic motion of 100-keV energetic electrons

References

Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar windmagnetosphere coupling function inferred from 10 magnetospheric state variables, *JGR*, *112*, A01206, doi:10.1029/2006JA012015.

Partamies, N., Weygand, J. M., and Juusola, L. (2017). Statistical study of auroral omega bands, *Ann. Geophys.*, *35*, doi.org/10.5194/angeo-35-1069-2017.

Schödel, R., Baumjohann, W., Nakamura, R., Sergeev, V. A., & Mukai, T. (2001). Rapid flux transport in the central plasma sheet. *JGR*, *106(A1)*, 301–314.

Sergeev, V. A., Malkov, M., & Mursula, K. (1993). Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail. *JGR*, *98(A5)*, 7609–7620. https://doi.org/10.1029/92JA02587.

Tsyganenko, N. A., V. A. and Andreeva (2016). An empirical RBF model of the magnetosphere parameterized by interplanetary and ground-based drivers. *JGR-A*, *121*, doi.org/10.1002/2016JA023217.