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INTRODUCTION

Baroclinic instability is the instability of flows of stratified rotating fluid with
vertical and horizontal velocity shear. The formation of large-scale atmospheric
eddies at mid-latitudes (cyclones, anticyclones) is associated with the realization of
baroclinic instability. Awareness of this fact is one of the greatest achievements of
20th century meteorology.

This contribution considers the problem of baroclinic instability of spatially periodic
surface geostrophic flows. The geophysical prototype for such flows are the
periodic zonal flows in the atmosphere of Jupiter and other giant planets, as well as
recently discovered multiple jet systems in the Southern Ocean.



Main governing equation and boundary condition

A semi-infinite atmosphere (z> 0) with a constant buoyancy frequency N and an
Inertial frequency f is considered. The atmospheric motion with a characteristic
velocity U and a horizontal scale D is described by the equation

O +[W,CI]=0 A=Ay =y +¥y +Vy [‘//’q]:‘//qu_qux (1)

Velocity components and buoyancy disturbance are:  ju=-y,| |v=y,| |o=y,

Here, D and H = Df / N as the horizontal and vertical scales, respectively,and T =
D /U and UD are the time scale, and the stream function scale, respectively.
A fundamentally important boundary condition is attached to equation (1):

2=0: Wzt"'[W’Wz]:O

In advective form it reads: 2=0: oy +Uoy, +Vo, =0

A more general dimensional form of equation (1) is (Charney, 1948; O6yxoB
1949; Charney & Stern,1962)
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SQG model; exact solution and its stability problem

Equation (1) is satisfied for flows with g=0. The dynamics of such flows is described
by solutions of Laplace equation with non-linear boundary conditionat z=0

Vi tYy t¥u =0, 2>0. 1=0. ‘/’zt"'[‘//")”z]:o

For harmonic functions at the boundary

Conservation laws: E,=0 V,=0 [E=

Held et al. (1995).

y=Fy.) F isthe integral Hilbert operator
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Exact stationary solution: w7 =—e"2cosy T=elsiny

o =e"cosy

Dimensional velocity profile:

0 =Ugze M sin(y/D)

Stability problem formulation:
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Linear stability problem; continued fractions

The linear theory is similar to the theory of Meshalkin and Sinai (1961), developed
for the Kolmogorov flow. Spatially periodic solutions are sought in the form of a

series: —
y = el Z“e—knzeinygpn M T SubsFiFutior.] Into the boundary
— condition yields:
aydy +dpg —dp, =0 dy = {1-Kq)oy a, = 24K, Tk(1-ky)
From the regularity condition follows the equation for finding the increment|A
~(3/2)=(0,31,85,..) (0,820, )=——
a2 " a3 +...

By truncating the continued fraction, one can obtain successive
approximations for increment |4




Dependence of the instability increment on the wavenumber

First approximation: —(ag/2)=1/
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Longwave instability with a preferred horizontal scale on the order of the main
flow wavelength.



Linear stability theory; Galerkin method

A solution is sought in the form of an expansion into functions fi=siny f,=cosy f3=1

w = A(X,z,t)siny+B(x,z,t)cos y + C(x,z,t), (1)

Ay + A, —A=0

From the Laplace equation it follows:

By« +B,,—B=0

Cy+C,; =0,

2)

Substituting (1) in the boundary condition and using the orthogonality conditions gives

z=0: A;+C,+C, =0

Cu+(U2)(A +A) =0[[Bx=0, (3

Solution of (2) is sought as:

From the boundary condition equations (3), the ODE system follows:

a +ac=0

The system has solutions with the increment: 22

c+ya=0

A= a(t)e‘kl

“sin(kx)| |C = c(t)e‘kZ cos(kx)

B=0

a =k({1-k)/k

y=(k-1)/2

_ k@=Kk)(k, -1)
- 2k,

The Galerkin method with three basis functions gives the result of the first
approximation in the theory of continued fractions.

A second approximation to the increment can be obtained for the solution:

W= A(l)(x, z,t)siny + B(l)(x, Z,t)cosy + A(Z)(x, Z,t)sin2y + B(Z)(x, z,t)cos2y + C(x,z,t)




Galerkin method and nonlinear perturbation dynamics

v =A(x,z,t)siny + B(x,z,t)cosy + C(x,z,t)

A=a(t)e™sin(kx)| |C =c(t)e™ cos(kx) B=h(t)e™

Substitution in the nonlinear version of the boundary conditions and
the use of orthogonality conditions leads to a system:

~ ~

at+at~)c:0 q+y5a:0 b -pac=0 b=h+1

a=KL-k)Iky| |y=(-D12] |B=kik-k)/2

The system is similar to the system describing the motion of a symmetric top in
classical mechanics (or the motion of a fluid in an ellipsoidal cavity).
Conservation laws:

;@2_05(;2 = |, = const ,Ba2+ab2: |, =const

From the second conservation law it follows that all solutions are limited. The
linear stage of exponential growth is replaced by the stage of nonlinear oscillations.
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Examples of nonlinear oscillations
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An approximate solution for the full stream function

v, = (b(t)+1)e 7 cos y +a(t)e ™ sin(kx)sin y +c(t)e ¥ cos(kx)

Very important: for the solution, the conservation laws of the SQG model are satisfied.

E :(1/2)](;& +y 24yl fiz=(1,-Kly) 20 V =(1/2)y; = (lz - kzll)/za
0




Numerical integration of SQG model equations

W TV TV =0, z>0.

72=0:

vy +vy,) =0

At the initial moment, a periodic flow plus disturbance are set.
Lx=4, Ly=2, Nx=256, k=0.5, c0=0.5

Ww(1.2m,0.6m,t)
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Time dependence of the amplitudes of the main Fourier harmonics
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Danger: full energy is not conserved in numerical codes.
For numerical calculations, we used the pseudo-spectral code for solving surface
quasi-geostrophic equations (SQG-equations) taken from the PyQG package

(https://pyqg.readthedocs.io/en/latest/index.html). H



Periodic flow with two boundaries; linear stability

Vix TWyy T¥2 =0,2>0 =01 yutlwy,] =0

Exact solution ___sinh(lz) . sinh(lz) 5 _cosh(i)
V= Tsinhy o) sinn(p) <) sinh(l)

corresponds to a spatially periodic flow concentrated at the upper boundary.

sin(ly)

<l

The dynamics of small perturbations is described by solutions of the Laplace equation
with boundary conditions: T (@12t+ 001Ky, Ty, =0

Following the Galerkin method, a solution is sought |y =C(x,z,t) + B(x,z,t)cos(ly)

From the Laplace eq. and boundary conditions: [g_+B_-128=0 Cy+Cpy =0
z=01: B,+h(z)C,,—h(z)C, =0, C,+(/2)h(z)B,, - (1/2)N'(z)B, =0

Finding a solution in the form of normal modes

B = (a sinh(zz) + by cosh(uz) e *~V|  |C = (agsinh(kz) + by cosh(kz) g™ Y w? =K% 412
gives an expression for the instability increment |4 = kg;

Result: the instability if  |0<k <] 12




—G)
Nonlinear vacillations in laboratory experiments by Hide (1953, 1958)

No turbulence: everything works like a clock.

An idealized weakly nonlinear theory is developed by Pedlosky (1963,1970) .
When weak supercriticality, then oscillations.
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Question: what is the result of the development of instability of
quasi-two dimensional flows of an ideal fluid?

Answer: if we take into account that energy is conserved, then
(with large probability) it leads to the occurrence of oscillations.
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Thank you for attention!
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