Optimized global map projections for specific applications: The triptychial projection and the Spilhaus projection Björn Grieger, European Space Astronomy Centre, Madrid

Equidistant cylindrical projection

\checkmark Neither shape nor area preserving.

- Widely used because of apparent simplicity.
- But things are not as simple as they may appear!

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus

projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

"Straight line" (great circle) in the real world

- Beware: straight lines are not straight lines!
- ...e.g., your flight from Madrid to Los Angeles.
- However, a great format to exchange surface data.

Mercator projection

- Conformal, i. e., shape preserving on (infinitesimal) small scales.
- Large scale distorsions (Greenland appears larger than Africa), poles are at infinity.
- Previously used by Google maps.
- Never intended for global world maps.

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection

Mercator projection

Abused as world map

- Very bad polar areas just cut off.
- Saw it with Greenland photoshopped out at the wall of a travel agency office (they obviously didn't sell trips to Greenland).

Björn Grieger

Map projection examples

Equidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II

Really the seafarer's map

- The real purpose is navigation.
- Steering a fixed course comes out as straight line!

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

- Criticized for showing countries near the Equator as too small when compared to Europe and North America.

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Gall-Peters projection

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection Gall-Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

- Perfectly area preserving, but large shape distortions.

Peirce quincuncial projection (1879)

- Conformal (with the exception of four singular points at the centers of the edges).
- Approximately area preserving over the continents.
- ...but Antarctica is not treated nicely! (Peirce said that nobody lives there, so nobody will complain.)

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

The Spilhaus projection a

 oblique aspect
The Northern hemisphere

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection

Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II.

The Spilhaus projection as oblique aspect

. . . conformally mapped to a square

Optimized global
map projections
Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection

Triptychial layout
Do it yourself
The Spilhaus proiection

The Adams projection of the world in a square II

The Spilhaus projection as sblique aspect

Elliptic isometric coordinates

Longitude λ, latitude φ, elliptic integral $F(\alpha)=\int_{0}^{\alpha} \frac{1}{\sqrt{1-\frac{1}{2} \sin ^{2} \alpha^{\prime}}} \mathrm{d} \alpha^{\prime}$:

$$
\begin{array}{c|c}
\xi_{1}=\arccos \left(\cos \varphi \cos \left(\frac{\pi}{4}+\lambda\right)\right) & \eta_{1}=\arccos \left(\cos \varphi \sin \left(\frac{\pi}{4}+\lambda\right)\right) \\
\xi_{2}=\arcsin \left(\sqrt{2} \cos \left(\frac{\xi_{1}+\eta_{1}}{2}\right)\right) & \eta_{2}=\arcsin \left(\sqrt{2} \sin \left(\frac{\xi_{1}-\eta_{1}}{2}\right)\right) \\
x=\operatorname{sgn}\left(\xi_{2}\right) F\left(\left|\xi_{2}\right|\right) & y=\operatorname{sgn}\left(\eta_{2}\right) F\left(\left|\eta_{2}\right|\right) \\
x \in[-1.84533,1.84533] & y \in[-1.84533,1.84533]
\end{array}
$$

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection

This maps a point (λ, φ) on the Northern hemisphere to a point in a square with rectangular coordinates (x, y).

Do it yourself
The Spilhaus projection

The Adams projection of the world in a souare II The Spilhaus projection as oblique aspect

Two hemispheres mapped one by one

- The two hemispheres shown side-by-side.
- Conformal with the exception of the four corner points.

Area distortions get large close to these points.
Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II

Slightly traverse version

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

- Rotated 25° around the z-axis to get the continents away from the critical points.

References

Tessellation

Two hemispheres side by side.

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of he world in a square II. The Spilhaus projection as oblique aspect

Tessellation

Two hemispheres side by side．
This can be tessellated．

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall－Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of he world in a square II．

The Spilhaus projection as oblique aspect

Tessellation

Two hemispheres side by side.
This can be tessellated.

The short edges match perfectly.

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

The Spilhaus projection as oblique aspect

Tessellation

Two hemispheres side by side.
This can be tessellated.

The short edges match perfectly.

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus proiection

The Adams projection of the world in a square II

The Spilhaus projection as oblique aspect

Tessellation

Optimized global

 map projectionsBjörn Grieger

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of ahemisphere to a square
Tesselation
Quincuncial layout

The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The short edges match perfectly.

The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

Tessellation

(i)

The short edges match perfectly.
The long edges match after a rotation by 180°.

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Tessellation

Map projection examples

Equidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

Tessellation

Map projection examples

Equidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection

Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

Quincuncial layout

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Quincuncial layout

Björn Grieger

Map projection examples

Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Quincuncial layout

(i)

Optimized global map projections

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

References

Quincuncial layout

(i)

Optimized global map projections

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect
References

Quincuncial layout

(i)

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

References

Peirce quincuncial projection (1879)

- Conformal (with the exception of four singular points at the centers of the edges).
- Approximately area preserving over the continents.
- ...but Antarctica is not treated nicely! (Peirce said that nobody lives there, so nobody will complain.)

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square Tesselation

Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

The Spilhaus projection as

The triptychial projection (Grieger, 2019)

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II The Spilhaus projection as oblique aspect
A map of the whole world showing all continents including Antarctica with minimal distortion and without any intersection

References

Standard "quincuncial" projection

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection Gall-Peters projection

Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

Rererences

Rotated 45° counterclockwise around the y-axis ...

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

. . . and 45° counterclockwise around the z-axis

©
(i)

Optimized global map projections

Björn Grieger

Map projection examples

Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection

Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

Cut the right hemisphere into two halfs

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II

References

... and move the right half over to the very left

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection Gall-Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

References

The triptychial projection of the world

Map projection examples

Equidistant cylindrical projection
Mercator projection Gall-Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

The triptychial projection of the world

- Conformal (shape preserving on small scales).
- Approximately area preserving over the continents.
- No intersection of continents, in particular Antartica.

The triptychial projection (Grieger, 2019)

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II The Spilhaus projection as oblique aspect
A map of the whole world showing all continents including Antarctica with minimal distortion and without any intersection

Surface data

Rectangular map with $2 n \times n$ pixels:
Björn Grieger

$$
i_{x}, i_{y} \longrightarrow \text { Surface data }
$$

Equidistant cylindrical projection:

$$
\begin{aligned}
& \lambda \longleftrightarrow i_{x} \\
& \varphi \longleftrightarrow i_{y}
\end{aligned}
$$

So we have a mapping:

$$
\begin{equation*}
\lambda, \varphi \longrightarrow \text { Surface data } \tag{1}
\end{equation*}
$$

Note: Center of pixel $(1,1)$:

$$
\lambda=-180 \frac{n-\frac{1}{2}}{n}, \varphi=90 \frac{\frac{n}{2}-\frac{1}{2}}{\frac{n}{2}}
$$

Center pixel $(2 n, n)$:

$$
\lambda=180 \frac{n-\frac{1}{2}}{n}, \varphi=-90 \frac{\frac{n}{2}-\frac{1}{2}}{\frac{n}{2}}
$$

Map projection examples
Equidistant cylindrical projection
Mercator projection Gall-Peters projection

Peirce quincuncial projection
Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus

projection

-

Applying the projection

(i)

Triptychial projection:

$$
\lambda, \varphi \longrightarrow j_{x}, j_{y}
$$

Direct application is not recommened, as it makes trouble at the edges of the map. Instead, use the inverse (needs numerical inversion): map. Instead, use the (ned numerical inversion):

$$
\begin{equation*}
j_{x}, j_{y} \longrightarrow \lambda, \varphi \tag{2}
\end{equation*}
$$

For each pixel $\left(j_{x}, j_{y}\right)$ of the projected map:

1. Get (λ, φ) from the mapping (2).
2. Get the surface data from the mapping (1).

Readymade tables providing mapping (2) are available online from the author, see References.

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square Tesselation

A map showing the whole world ocean without any intersection and with only moderate distortion

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II

The Spilhaus projection as

 oblique aspect
The whole sphere ...

Optimized global

 map projectionsBjörn Grieger

Map projection

 examplesEquidistant cylindrical projection

Mercator projection
Gall-Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square

Tesselation
Quincuncial layout

The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

. . . contracted conformally to a hemisphere . . .

New longitude and latitude:

$$
\begin{aligned}
\lambda_{2}= & \frac{1}{2} \lambda_{1} \\
\varphi_{2}= & \frac{\pi}{2}- \\
& 2 \arctan \sqrt{\tan \left(\frac{\pi}{2}-\varphi_{1}\right)}
\end{aligned}
$$

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

. . . and then conformally mapped to a square

Like before one hemisphere for the quincuncial projection:

$$
\left(\lambda_{2}, \varphi_{2}\right) \longrightarrow(x, y)
$$

But here the hemispere contained already the whole (contracted) world!

Map projection examples
Equidistant cylindrical projection
Mercator projection Gall-Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

The Adams projection of the world in a square II（1929）＂

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection

Gall－Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus

The Adams projection of the world in a square II

The Spilhaus projection as oblique aspect

Björn Grieger

1. Rotate the poles well into China (near Hankou) and South America (near Cordoba):

$$
-60^{\circ} \text { around }\left(\cos 205^{\circ}, \sin 205^{\circ}, 0\right)
$$

2. Rotate the point $\left(169^{\circ} \mathrm{W}, 65.3^{\circ}\right)$ near the Bering Strait to the edge:
-88.02° around the new z-axis

Map projection examples

Equidistant cylindrical projection
Mercator projection

Rotating the poles into China and South America

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Rotating the poles into China and South America

Optimized global map projections

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection

Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection o the world in a square II
The Spilhaus projection as oblique aspect

Rotating the poles into China and South America

Optimized global map projections

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Rotating the poles into China and South America

Map projection examples

Equidistant cylindrical projection
Mercator projection
Gall－Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

References

Rotating the poles into China and South America

Map projection examples

Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II

The Spilhaus projection as oblique aspect

．．．and rotating the Bering Strait to the edge ．．．

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall－Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

. . . and rotating the Bering Strait to the edge . . .

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

．．．and rotating the Bering Strait to the edge ．．．

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall－Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

. . . and rotating the Bering Strait to the edge . . .

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

. . . and rotating the Bering Strait to the edge . . .

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

The Spilhaus projection

（i）

Optimized global map projections

Björn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall－Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Widened view (replications from tesselation)

Optimized global

 map projectionsBjörn Grieger

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

Replicated ocean blacked out

Optimized global map projections

Björn Grieger

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall－Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

A map showing the whole world ocean without any intersection and with only moderate distortion

Map projection

 examplesEquidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection
Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection
Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus
projection
The Adams projection of the world in a square II
The Spilhaus projection as oblique aspect

References (1)

Qunicuncial projection

- Peirce, C. S. (1879). "A quincuncial projection of the sphere". American Journal of Mathematics 2 (4): 394-396. doi:10.2307/2369491. Available at https://www.jstor.org/stable/2369491

Map projection examples
Equidistant cylindrical projection
Mercator projection
Gall-Peters projection
Peirce quincuncial projection

Conformal mapping of a hemisphere to a square Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection
Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

References
http://comsim.esac.esa.int/rossim/bgrieger/triptychial

References (2)

Optimized global map projections

Björn Grieger

Spilhaus projection

- ArcGIS, The Spilhaus World Ocean Map in a Square:
https://storymaps.arcgis.com/stories/756bcae18d304a1eac140f19f4d5cb3d
- Adams, O. S. (1929). "Conformal Projection of the Sphere within a Square". U. S. Coast and Geodetic Survey, Special Publication No. 153. Available at
https://books.google.com/books/about/Conformal_Projection_of_the_Sphere_Withi.html?id=NI1ZwCAJpD8C

Surface data used

\downarrow File
world.topo.bathy. 200407.3x5400x2700.png
in NASA's Blue Marble collection at
https://visibleearth.nasa.gov/collection/1484/blue-marble

Map projection examples

Equidistant cylindrical projection
Mercator projection
Gall-Peters projection

Peirce quincuncial projection

Conformal mapping of a hemisphere to a square
Tesselation
Quincuncial layout
The triptychial projection

Oblique aspect of the quincuncial projection

Triptychial layout
Do it yourself
The Spilhaus projection

The Adams projection of the world in a square II The Spilhaus projection as oblique aspect

