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INTRODUCTION

Onset of thermal and haline convection was studied separately by Lapwood (1948)
and Wooding (1956) in theoretical models using analytical methods. They established

that the buoyancy force caused by temperature (AT) and concentration difference (Ac)

can induce natural convection. In this study, the combined effect of temperature- and

salinity-driven natural convection was examined in 2D homogeneous porous media in

the cases of three scenarios (Model A, B, C).

THE MAIN QUESTIONS

> How does the interaction of the thermal and haline term affect the

onset of the natural convection?

» Under what conditions does a time-dependent flow system evolve in

the theoretical models?

> How can the thermohaline convection be characterized by the non-

dimensional numbers?
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PHYSICAL BACKGROUND

Partial differential equation system

The equations were coupled by the Darcy flux

» Mass conservation (q) and the temperature- and concentration-

Darcy’s Law dependent water density (p,,(c,T)) .
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» Mass transport
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Heat transport NMULTIPH
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Non-dimensional thermal expansion 0.01-1
Non-dimensional haline concentration BAc 10-5-10-3 -
Permeability k 10-11 m?
Reference water density Po 1000 kg/m3
Model thickness H 10 m
Dynamic viscosity of water n 0.001 Pa-s
Thermal diffusivity K 7.16-107 m?/s

Diffusion coefficient D, 10° m?/s
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NUMERICAL MODEL
¢ T
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k=10" m?

Non-dimensional thermal expansion and haline concentration were increased from

aAT=0.01 to 1 and from BAc=10" to 103 respectively, while the average Darcy flux (q,,)

the Nusselt number (Nu) and the Sherwood number (Sh) were computed. Other

physical properties (e.g. thickness (H=10 m), length (L=200 m), permeability (k=101

m?) of the model domain were kept constant values.

Variable density of the pore water: pw(c, T) = poll + Bc — aT]




NON-DIMENSIONAL NUMBERS
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Thermal Rayleigh number

gkpoH aAT
RaT =
M K

Lewis number

Lo K
e = D,
Buoyancy ratio

BAc
BR = ——
aAT

Haline Rayleigh number

_ gkpoH BAc

Thermohaline Rayleigh number

gkpoH |aAT BAc

R =
ary » [ T D,
Region of the stability

Ra; + Ray = 4m?

(Nield and Bejan, 2006)

Ray, = BR:Le:-Ra; =
H T - Dy

One of the most important questions is
whether the previous formulas are
universal. If this is not the case, how

could the flow be easily characterized

by the non-dimensional numbers?
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THREE MODEL SCENARIOS

Model A
?
c.=1 T.=0 -
AT - facilitate gkpoH |0AT  BAc
. Rary = +
Ac - facilitate N K D,
c,=0 T,=1
Model B
?
¢.=0 T.=0
AT - facilitate R gkpoH |aAT  BAc
ary = —
Ac - reduce ™ n Kk Do
c,=1 T,=1
Model C
?
c.=1 T=1
AT - reduce R gkpoH [BAc AT
ary = —
Ac - facilitate TH Dy K
¢,=0 T,=0




RESULTS - MODEL A

Temperature o o Concentration
Initial conditions

st o

logloaz-z RaTH=23.51 10g10B=-5
log,,0=-2 Ra,;4,=111.9 log,,B=-4
log,,0=-1 Ra,;4,=148.8 log,,B=-5
annnnnnnnn B Es Ei% El6 £10 Gl s b |
log,,0=-1 Ra,;4,=238.1 log,,B=-4
Mnnnnnnnnn 1D 8 €48 Al D 35 Al a8 |
logloaz-z RaTH=994 7 10g106=-3
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RESULTS - MODEL A

Temperature Concentration
log,,0=-1 Ra;,=1118 log,,B=-3
log,,0=0 Ra,;=1380 log,,B=-5
Ldd444444d DEBDDEDOBEE
t=10000d 0 —Sameme 1 0 EE—— e ]

» oAT<=102and BAc<=10"° - no thermal and haline convection in the porous medium

» aAT<=107? and BAc=10*-103 — steady-state and time-dependent haline convection
without any thermal effects

» aAT=10"1and BAc=10°-10"3 - steady-state thermohaline convection

» oAT=1and BAc=10°-10"3 - time-dependent thermohaline convection

The effect of salinity-driven convection was strongly influenced by the heat transport

mechanisms, because the Lewis number was Le=716. However, the natural convection might

not be universally characterized by the thermohaline Rayleigh number!?
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RESULTS - MODEL A

Average Darcy flux
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RESULTS - MODEL B

Average Darcy flux _
No convection
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RESULTS - MODEL C

Average Darcy flux _
No convection
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SUMMARY & OPEN-ENDED QUESTIONS

Both effects facilitated the onset of natural convection. However, the effect of salinity-driven natural

convection was strongly influenced by the heat transport mechanisms (k>>D,). Steady-state haline,

Model A

thermohaline and time-dependent thermohaline convection were noticed (e.g. Nu vs BR, Sh vs BR).

The natural convection was facilitated by thermal effect, but it was reduced by saline effect. In this
case, steady-state and time-dependent thermohaline convection were noticed in the numerical

model. The onset of thermohaline convection might be defined by a critical Rayleigh number (Ra;y)

/M
0
<
=)
=,

with a buoyancy ratio (BR).

The natural convection was facilitated by saline effect, but it was reduced by thermal effect. In this

case, only haline convection evolved in the numerical model, which was shown by the Darcy flux

Model C

(q,,>1019), the Sherwood (Sh>1) and the Nusselt number (Nu=1).

How to define the thermohaline Rayleigh number in the different model scenarios?
What is the critical value of the thermohaline Rayleigh number?
Maybe a new non-dimensional number should be defined in order to characterize the

thermohaline convection?
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