What controls the transition from fluvial regime to a
ETH ziirich debris-flow regime? . @

™

Collaborators: o 3 ‘ "
S. Willett, H. Algattan, ETHZ W - Odin MARC
L. McGuire, U. Arizona 2 7 CNRSIGET

S. McCoy, U. Nevada, Reno




Fluvial scaling seems limited upstream

The widely used stream-power incision model state : E=K A" (dz/dx)"

Leading at steady-state to a slope area scaling:
dz/dx = (U/K)"" A

Or, in its integral form a proportionality
between z and g

log(slope)

(A,
- - 1In i = — 2 | dx’
z-z, = (U/K)" y with X fo A(x ") X

However, many upstream segments have

constant slope. They are considered colluvial - o

channel (DiBiase et al.,2012, Wang et al., 2017)
or debris-flow channels (Stock and Dietrich
2003, Penserini et al., 2017)

With,

A=Drainage area
K=Fluvial Erodibility
U=Uplift rate
6=m/n=concavity

Fluvial V

bedrock channel

6=0.47+0.05, k=79.16+29.35
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An empirical hybrid model for channel erosion

To describe the slope-area data going to a constant slope upstream, Stock and Dietrich,
2003 prposed a simple mathematical model, that can be rewritten as:

107 .

dz _ S 1 .

dx 1+(A/A.) Sdf i Increasing A,
What are typical values of qé 7 BRI
S.andA_? %
How do they depend on 10"t :
erosion rates and hillslope
processes ? e S N
Penserini et al., 2017 -3 -2 -1 0
suggested that A_increase 10 10 9 10 10
with erosion rates but not Area (km”)
S, _

5 We analyzed the morphometry of >60 catchments with LIDAR
DEM and average denudation constrained by °Be. 3



Consistency of the hybrid model and SPIM: implications

1/n ) 0
@:( U) % Classic SPIM dz S _ SaAc Hybrid model

dx \ K dx 1+(A/A ) A"+A’

1/n 0
For consistency the model should match for A>A_. For a small (E) =Sy (L)

catchment, where the maximum value is A (with A>~A ) we get: K A+ AL
U 1/n
And where A>>Ac (i.e., A™+A " ~A") , we obtain: (?) ~ Sy A’

Then note that the integral of the hybrid model yields a modified Chi definition
(Equivalent to Eq. 15 of Hergarten et al., 2016):

AH U 1/n _px Az '
Z—Zy=Sy AH Xar ™ KA™ Xar  With: de—fo Alx V+A? dx
0



Extracting morphometry from LIDAR DEM: Ex 1

We use a D8 flow routing from the first pixel. Pixels with
Strahler order <3 are considered preliminary “hilllsopes”,
and the others “channels” (below in red).
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Extractlng morphometry from LIDAR DEM: Ex 1
E=0.66 mmlyr
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and fit of the Hybrid model.

m/n =

Elevation gain from outlet,z-zo, m

0.479 100

Drainage area, m

10°
2

We fit the slope-area
median with the hybrid
model and obtain A ,

S, and 0.

We compute the fluvial
steepness k_ as the

slope of a Chi-Z plot.

Red: Chi for trunk channel

Yellow: idem but where
A>0.66A , A the max of A.

Blue: Chi_df (slide 4) for trunk
and tributaries.

k. and k_, is extracted from

yellow and blue curves,
respectively. Note their similar
values. 6



Extracting morphometry from LIDAR DEM: Ex 2

We use a D8 flow routing from the first pixel. Pixels with
Strahler order <3 are considered preliminary “hilllsopes”,
and the others “channels” (below in red).
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Extracting morphometry from LIDAR DEM: EXx 2

' We fit the slope-area

Xhs=97 Ac=0.0071(km? < o | E=0.15 lyr median with the hybrid
100 | model and obtain A ,
€ 500/ S, and 0.
=
5
= We compute the fluvial
. 5 400 steepness k_ as the
S = slope of a Chi-Z plot.
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Summary of debris-flows (DF) parameters vs erosion:

1) S, seems to increase with E with saturation near 0.8-1...
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2) Sdf can be pretty
low ~0.2 (10°)

But not inconsistent
with DF angle of
arrest.

3) Unclear for A._.

- However we saw
(slide 4) that S A

scales with U/K.
What about
variability in K ?



Fluvial steepness, (dz/dy), m

Steepness against erosion:
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we expect k =(E/K)""

10Be Erosion rates:

S. Gab: DiBiase et al., 2010,
2012

1 S. Ber: Binnie et al., 2007

1 Oregon: Penserini et al.,
1 2017,

Valensole: Godard et al., 2020

Switerzland

|1 Sierra Nev.: Hurst et al., 2012.

- Global n rather near

2 than 1. In any case K
IS quite variable...

— Let’'s compare A_ to

steepness...
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df,corrected for basin size, m

C

Debris-flow steepness match fluvial steepness

So knowing k_and S  we can find A_! But what controls S  ?
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Debris-flow mechanics from granular model
(courtesy S. McCoy/ L. McGuire)

Volume eroded Impact

by impact \ / frequency Impact intensity

Debris flow
Erosion rate

= Edf — V;If — kdflzlf (e.g. Sklar and Dietrich, 2004)
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Implications of granular model scaling:

dx

Edfocde(@) , with n_~5-6, and H  the DF flow height, proportional to initial volume, V..

d
Further the long term erosion will depend on DF frequency, yielding: Eg4ocF ;V, (di)

At steady-state U=E . and the F V. should be proportional to the sediment flux equal to UA_.

Assuming A, =w X *we obtain:  U=E, U X, ( gz )
X

And therefore: S Xp ™

Can we validate this scaling ? What control X _? If we assume a simple diffusive hillslope
that ends when its gradient is reaching S, (i.e., S, =UX /D) we obtain :

ndf+2) ndf+2)

U\—2— D\ — We also need to constrain D! For
SdfoC ( X psoC U (

example by extracting hilltop curvature.

13



-1

-Y''" Hilltop Curvature, m™

Apparent Diffusivity (E/C ), m”

Estimation of Hilltop curvature and diffusivity

We implement a
method similar to
the one proposed
by Hurst et al.,
2012.
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Hillslope length and maximum slope:

Diffusion theory : S__=U/D X ; U/D = C .. Is max(S, )=S_ ? — matches better E/0.01 than C
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Fredictions

Predictions based on global parameters
Variable : E, K; Fixed : D=0.01; n=2; m=1; n =5 ; Hacks constant. Eq. On slide 4 and 13.
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Conclusions:

With LIDAR and !°Be data we constrained relations between erosion rate E, fluvial erodibility K, hillslope
diffusivity D and debris flow parameters A_and S_.. Our major findings are:

- Fluvial network systematically overprinted by DF upstream of 0.5-5 km?2. The upstream limit of SPIM
can be found based on A , when knowing S and the steepness.

As a result a DF-corrected version of y is proposed and validated (as in Hergarten et al., 2016).

- We found S between 0.2 and 0.9, varying with E but also with the length of diffusive hillslopes, X,

Although it does not match perfectly with our estimate of D based on curvature, the assumption that
hillslopes are diffusive and end where their gradient reach S is fair.

- The (bidirectional) coupling of X __and S, means that, knowing U, D and DF mechanics constant
allow to predict X _and S_. Then knowing fluvial steepness, A_ can be found and a profile from divide to
the fluvial domain can be fully predicted.

Future work : — Include variable m/n (in this presentation we fixed m/n=0.5, often but not always
matching the best-fit to the data...)
- Better understand the relations between E, D and C, .

- Implement the predictions into the numerical model DAC (Divide And Capture).
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