
1

What controls the transition from fluvial regime to a 
debris-flow regime? 

Odin MARC
CNRS/GET

ETHZ

© 2020, Odin MARC, All rights reserved.

Collaborators:
S. Willett, H. Alqattan, ETHZ
L. McGuire, U. Arizona
S. McCoy, U. Nevada, Reno



2

Fluvial scaling seems limited upstream
The widely used stream-power incision model state : E=K Am (dz/dx)n

Leading at steady-state to a slope area scaling:
dz/dx = (U/K)1/n A-q  

Or, in its integral form a proportionality 
between z and c 

  z- z
0
 = (U/K)1/n c  with

Wang et al., Esurf, 2017

With,
A=Drainage area
K=Fluvial Erodibility
U=Uplift rate
q=m/n=concavity

χ=∫0

x( A o
A (x ' ))

θ

dx '

However, many upstream segments have 
constant slope. They are considered colluvial 
channel (DiBiase et al.,2012, Wang et al., 2017) 
or debris-flow channels (Stock and Dietrich 
2003, Penserini et al., 2017)
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An empirical hybrid model for channel erosion 

 To describe the slope-area data going to a constant slope upstream, Stock and Dietrich, 
2003 prposed a simple mathematical model, that can be rewritten as:

   
dz
dx

=
Sdf

1+(A / Ac)
θ S

df
Increasing A

c

What are typical values of 
S

df
 and A

c
 ?

How do they depend on 
erosion rates and hillslope 
processes ?
Penserini et al., 2017 
suggested that A

c
 increase 

with erosion rates but not 
S

df
...

We analyzed the morphometry of >60 catchments with LIDAR 
DEM and average denudation constrained by 10Be. 
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Consistency of the hybrid model and SPIM: implications

dz
dx

=
Sdf

1+(A / Ac)
θ =

S df A c
θ

A c
θ+Aθ

dz
dx

=(UK )
1 /n 1
Aθ

Classic SPIM Hybrid model

For consistency the model should match for A>A
c 
. For a small 

catchment, where the maximum value is A
t
 (with A

t
>~A

c
) we get:

And where A>>Ac (i.e., Aq+A
c

q ~Aq) , we obtain: (UK )
1 /n

≈Sdf Ac
θ

(UK )
1 /n

=Sdf A c
θ( At

θ

A t
θ+A c

θ )

χ df=∫0

x( A o
θ

A(x ' )θ+A c
θ )dx 'z−z0=Sdf

Ac
θ

A0
θ χ df≈( UKA0m)

1 /n

χ df With: 

Then note that the integral of the hybrid model yields a modified Chi definition 
(Equivalent to Eq. 15 of Hergarten et al., 2016): 
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Extracting morphometry from LIDAR DEM: Ex 1

E= 0.66 mm/yr

We use a D8 flow routing from the first pixel. Pixels with 
Strahler order <3  are considered preliminary “hilllsopes”, 
and the others “channels” (below in red). 

Xhs: Diffusive lengthscale (S grows with A)

In scatter plot we always 
compute the 16, 50 and 84 
percentile of the gradient 
within log-bins of Area.
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Extracting morphometry from LIDAR DEM: Ex 1 

S
df

E= 0.66 mm/yr
We fit the slope-area
median with the hybrid 
model and obtain A

c
, 

S
df
 and q. 

We compute the fluvial 
steepness k

s
 as the 

slope of a Chi-Z plot.

Red: Chi for trunk channel

Yellow: idem but where 
A>0.66A

t 
, A

t
 the max of A.

Blue: Chi_df (slide 4) for trunk 
and tributaries.

k
s
 and k

sdf
 is extracted from 

yellow and blue curves, 
respectively. Note their similar 
values.

Strahler <3
 (for reference)

Strahler >3, with statistics 
and fit of the Hybrid model.
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Extracting morphometry from LIDAR DEM: Ex 2

E= 0.15 mm/yr

We use a D8 flow routing from the first pixel. Pixels with 
Strahler order <3  are considered preliminary “hilllsopes”, 
and the others “channels” (below in red). 

Xhs: Diffusive lengthscale (S grows with A)

In scatter plot we always 
compute the 16, 50 and 84 
percentile of the gradient 
within log-bins of Area.
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Extracting morphometry from LIDAR DEM:  Ex 2 

S
df

E= 0.15 mm/yr
We fit the slope-area
median with the hybrid 
model and obtain A

c
, 

S
df
 and q. 

We compute the fluvial 
steepness k

s
 as the 

slope of a Chi-Z plot.

Red: Chi for trunk channel

Yellow: idem but where 
A>0.66A

t 
, A

t
 the max of A.

Blue: Chi_df (slide 4) for trunk 
and tributaries.

k
s
 and k

sdf
 is extracted from 

yellow and blue curves, 
respectively. Note their similar 
values.
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Summary of debris-flows (DF) parameters vs erosion:

1) S
df
 seems to increase with E with saturation near 0.8-1... 2) Sdf can be pretty 

low ~0.2 (10°)
But not inconsistent 
with DF angle of 
arrest.

3) Unclear for A
c
. 

→ However we saw 
(slide 4) that S

df
A

c
  

scales with U/K. 
What about  
variability in K ?
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Steepness against erosion: we expect k
s
=(E/K)1/n

10Be Erosion rates:

S. Gab: DiBiase et al., 2010, 
2012

S. Ber: Binnie et al., 2007

Oregon: Penserini et al., 
2017, 

Valensole: Godard et al., 2020

Switerzland

Sierra Nev.: Hurst et al., 2012.

→Global n rather near 
2 than 1. In any case K 
is quite variable... 
→ Let’s compare A

c
 to 

steepness...
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Debris-flow steepness match fluvial steepness

So knowing k
s
 and S

df 
we can find A

c
 ! But what controls S

df
 ?
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Debris-flow mechanics from granular model 
(courtesy S. McCoy/ L. McGuire)

(e.g. Sklar and Dietrich, 2004)
Debris flow 
Erosion rate

Impact intensity

McCoy et al. (2012) McCoy et al. (2012)

Impact 
frequency

Volume eroded 
by impact
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Implications of granular model scaling:

Edf∝H df( dzdx )
ndf

, with  n
df 

~5-6, and H
df
 the DF flow height, proportional to initial volume, V

i
.

Further the long term erosion will depend on DF frequency, yielding: Edf∝F df V i( dzdx )
ndf

At steady-state U=E
df
 and the F

df
V

i
 should be proportional to the sediment flux equal to UA

hs
.

Assuming A
hs

 = w
c
X

hs
2 we obtain: 

And therefore:  

U=Edf∝U Xhs
2 ( dzdx )

ndf

Sdf∝Xhs
−2 /ndf

Can we validate this scaling ? What control X
hs

 ? If we assume a simple diffusive hillslope 
that ends when its gradient is reaching S

df
, (i.e., S

df
=UX

hs
 / D) we obtain :

Sdf∝(UD )
2

(ndf+2) X hs∝(DU )
ndf

(n df+2)
 → We also need to constrain D! For 
example by extracting hilltop curvature.
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Estimation of Hilltop curvature and diffusivity 

We implement a 
method similar to 
the one proposed 
by Hurst et al., 
2012. 

However CHT 
seems to increase 
sublinearly with E.

And thus D to 
increase with E. 
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Hillslope length and maximum slope:
Diffusion theory : S

hs
 = U/D X ; U/D = C

HT
. Is max(S

hs
)=S

df
 ? → matches better E/0.01 than C

ht

Is the apparent 
increase in 
diffusion an 
artifact ?

Or U/D is different 
of C

HT
 , ?

because of soil 
depth variations ?

Anyway we next 
assume D=0.01 to 
try to predict X

hs,
 S

df
 

and A
c
.
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Predictions based on global parameters
Variable : E, K

 
;  Fixed : D=0.01; n=2; m=1 ; n

df
=5 ; Hacks constant. Eq. On slide 4 and 13.
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Conclusions:
With LIDAR and 10Be data we constrained relations between erosion rate E, fluvial erodibility K, hillslope 
diffusivity D and debris flow parameters A

c
 and S

df
. Our major findings are:

→ Fluvial network systematically overprinted by DF upstream of 0.5-5 km2. The upstream limit of SPIM 
can be found based on A

c
, when knowing S

df
 and the steepness. 

As a result a DF-corrected version of c is proposed and validated (as in Hergarten et al., 2016).

→ We found S
df
 between 0.2 and 0.9, varying with E but also with the length of diffusive hillslopes, X

hs.

 Although it does not match perfectly with our estimate of D based on curvature, the assumption that 
hillslopes are diffusive and end where their gradient reach S

df
 is fair.

→ The (bidirectional) coupling of Xhs and Sdf means that, knowing U, D and DF mechanics constant 
allow to predict X

hs
 and S

df
. Then knowing fluvial steepness, A

c
 can be found and a profile from divide to 

the fluvial domain can be fully predicted. 

Future work : → Include variable m/n (in this presentation we fixed m/n=0.5, often but not always 
matching the best-fit to the data…)

→ Better understand the relations between E, D and C
ht
 .

→ Implement the predictions into the numerical model DAC (Divide And Capture). 
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