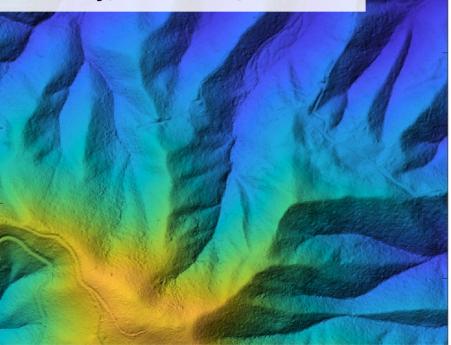
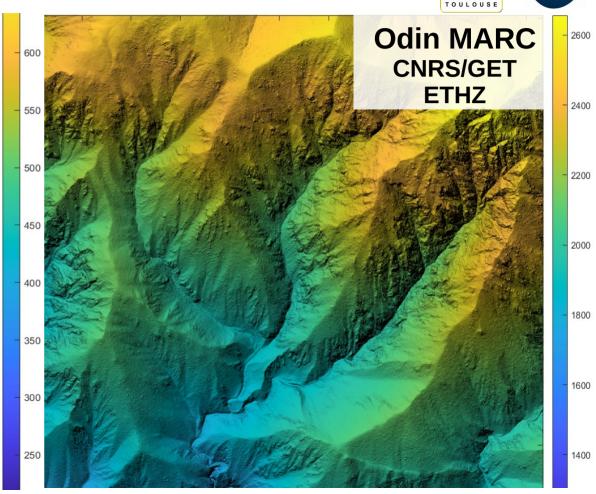
What controls the transition from fluvial regime to a debris-flow regime?

Collaborators: S. Willett, H. Alqattan, ETHZ L. McGuire, U. Arizona S. McCoy, U. Nevada, Reno



© 2020, Odin MARC, All rights reserved.



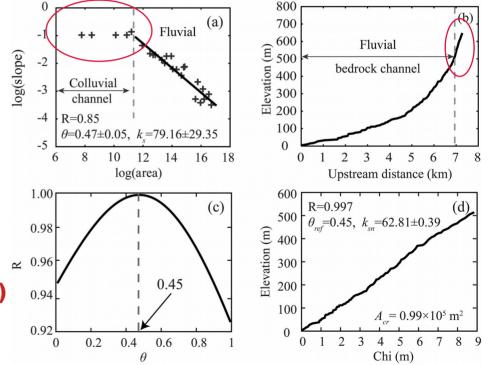
Fluvial scaling seems limited upstream

The widely used stream-power incision model state : E=K A^m (dz/dx)ⁿ Leading at steady-state to a slope area scaling: dz/dx = (U/K)^{1/n} A^{-θ}

Or, in its integral form a proportionality between z and $\boldsymbol{\chi}$

z-z₀ = (U/K)^{1/n}
$$\chi$$
 with $\chi = \int_0^x \left(\frac{A_o}{A(x')}\right)^\theta dx'$

However, many upstream segments have constant slope. They are considered colluvial channel (DiBiase et al.,2012, Wang et al., 2017) or debris-flow channels (Stock and Dietrich 2003, Penserini et al., 2017)



Wang et al., Esurf, 2017 2

With.

A=Drainage area

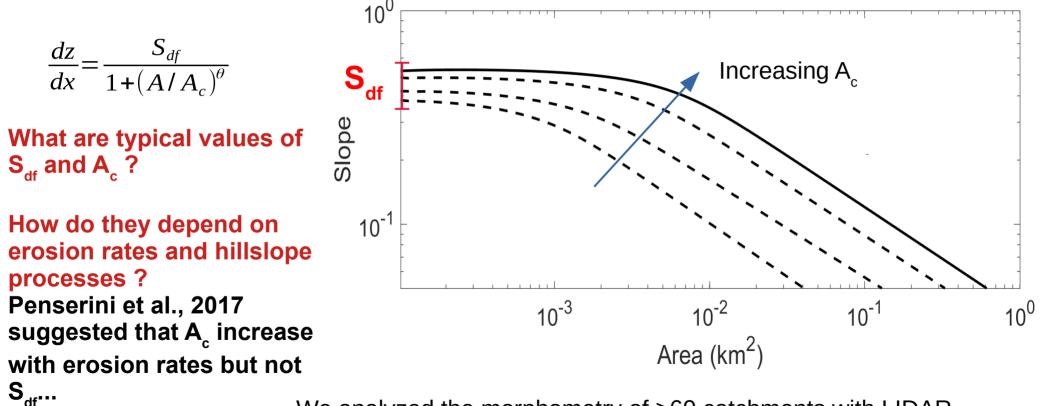
 $\theta = m/n = concavity$

U=Uplift rate

K=Fluvial Erodibility

An empirical hybrid model for channel erosion

To describe the slope-area data going to a constant slope upstream, Stock and Dietrich, 2003 prposed a simple mathematical model, that can be rewritten as:



We analyzed the morphometry of >60 catchments with LIDAR DEM and average denudation constrained by ¹⁰Be.

3

Consistency of the hybrid model and SPIM: implications

$$\frac{dz}{dx} = \left(\frac{U}{K}\right)^{1/n} \frac{1}{A^{\theta}} \quad \text{Classic SPIM}$$

$$\frac{dz}{dx} = \frac{S_{df}}{1 + (A/A_c)^{\theta}} = \frac{S_{df}A_c^{\theta}}{A_c^{\theta} + A^{\theta}}$$
 Hybrid model

 $\left(\frac{U}{K}\right)^{1/n} \approx S_{df} A_c^{\theta}$

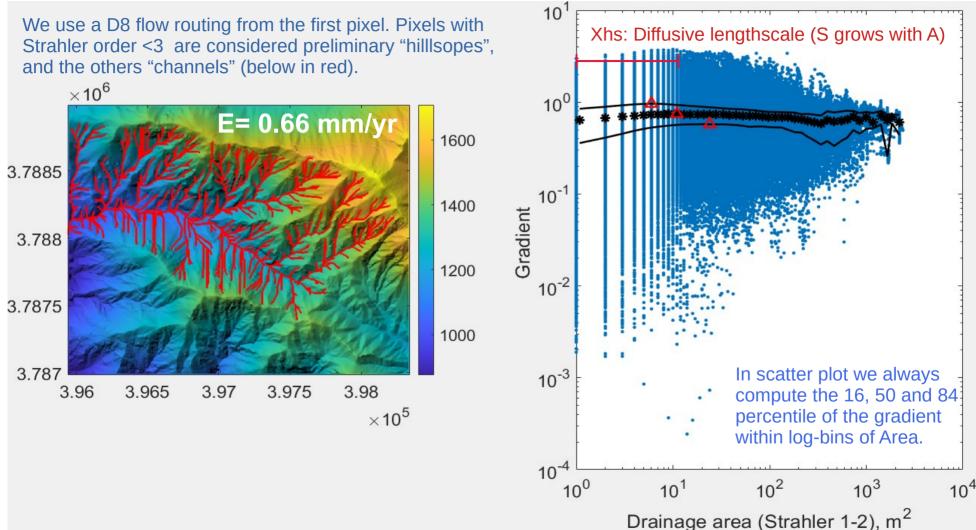
For consistency the model should match for $A>A_c$. For a small catchment, where the maximum value is A_t (with $A_t > \sim A_c$) we get:

$$\left(\frac{U}{K}\right)^{1/n} = S_{df} A_c^{\theta} \left(\frac{A_t^{\theta}}{A_t^{\theta} + A_c^{\theta}}\right)$$

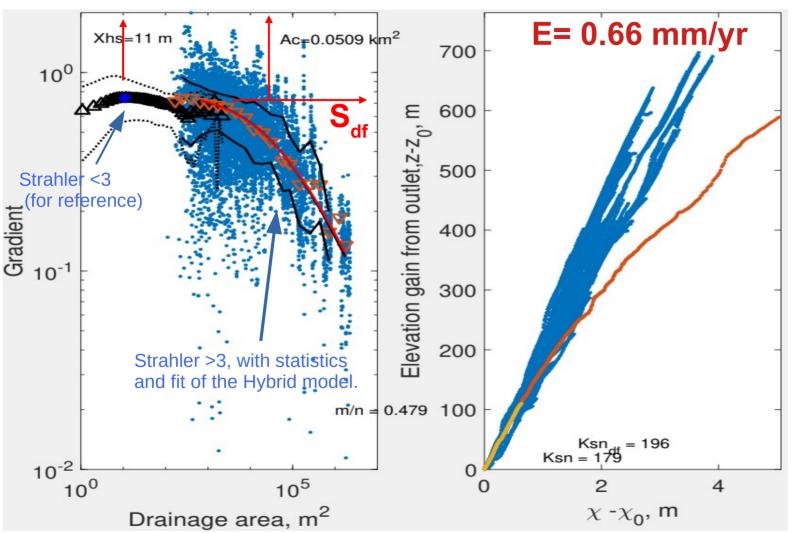
And where A>>Ac (i.e., $A^{\theta}+A_{c}^{\theta} \sim A^{\theta}$), we obtain:

Then note that the integral of the hybrid model yields a modified Chi definition (Equivalent to Eq. 15 of Hergarten et al., 2016):

$$z - z_0 = S_{df} \frac{A_c^{\theta}}{A_0^{\theta}} \chi_{df} \approx \left(\frac{U}{KA_0^{\theta}}\right)^{1/n} \chi_{df} \quad \text{With:} \quad \chi_{df} = \int_0^x \left(\frac{A_o^{\theta}}{A(x')^{\theta} + A_c^{\theta}}\right) dx'$$



5



We fit the slope-area median with the hybrid model and obtain A_c , S_{df} and θ .

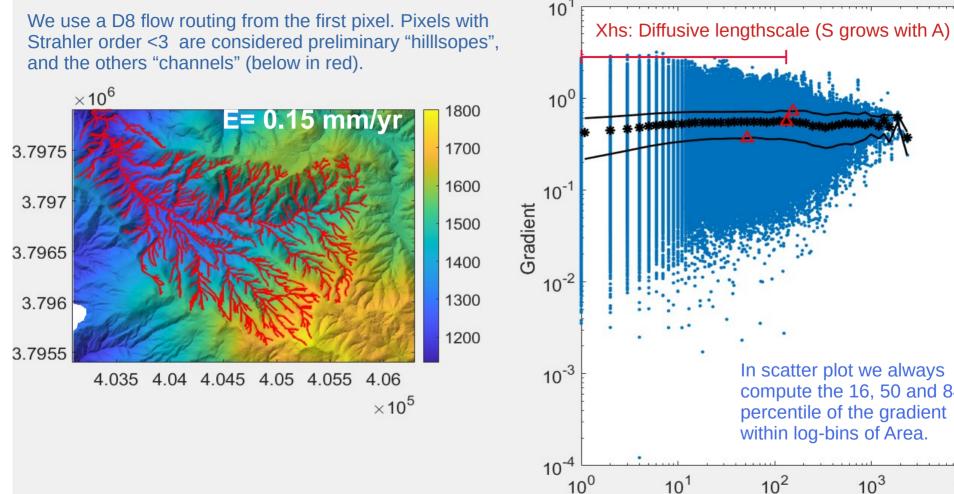
We compute the fluvial steepness k_s as the slope of a Chi-Z plot.

Red: Chi for trunk channel

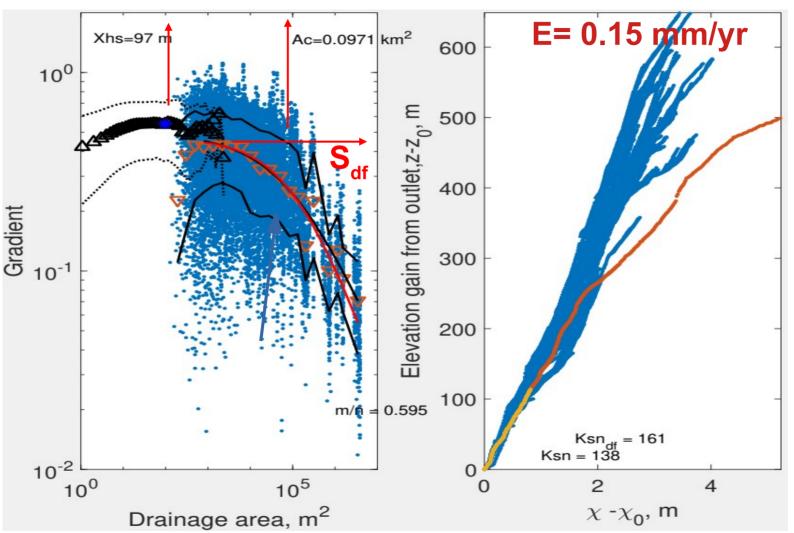
Yellow: idem but where $A>0.66A_t$, A_t the max of A.

Blue: Chi_df (slide 4) for trunk and tributaries.

k_s and k_{sdf} is extracted from yellow and blue curves, respectively. Note their similar values. 6



In scatter plot we always compute the 16, 50 and 84 percentile of the gradient within log-bins of Area. 10^{3} 10^{4} Drainage area (Strahler 1-2), m²



We fit the slope-area median with the hybrid model and obtain A_c , S_{df} and θ .

We compute the fluvial steepness k_s as the slope of a Chi-Z plot.

Red: Chi for trunk channel

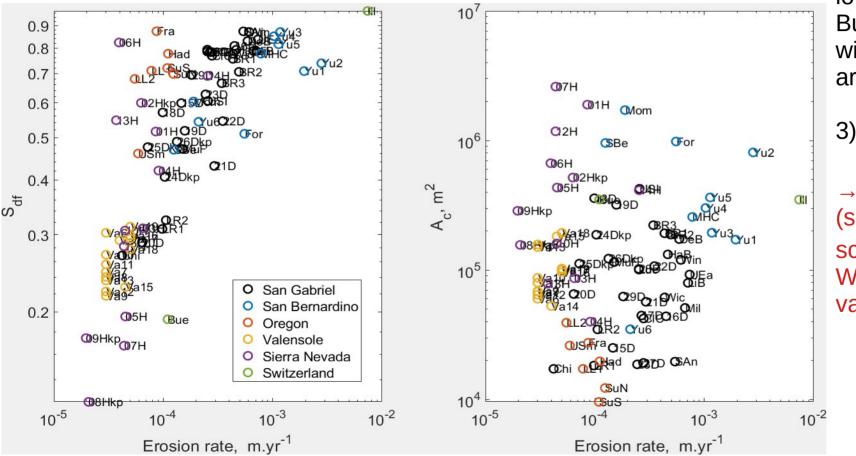
Yellow: idem but where $A>0.66A_t$, A_t the max of A.

Blue: Chi_df (slide 4) for trunk and tributaries.

k_s and k_{sdf} is extracted from yellow and blue curves, respectively. Note their similar values. **8**

Summary of debris-flows (DF) parameters vs erosion:

1) S_{df} seems to increase with E with saturation near 0.8-1...

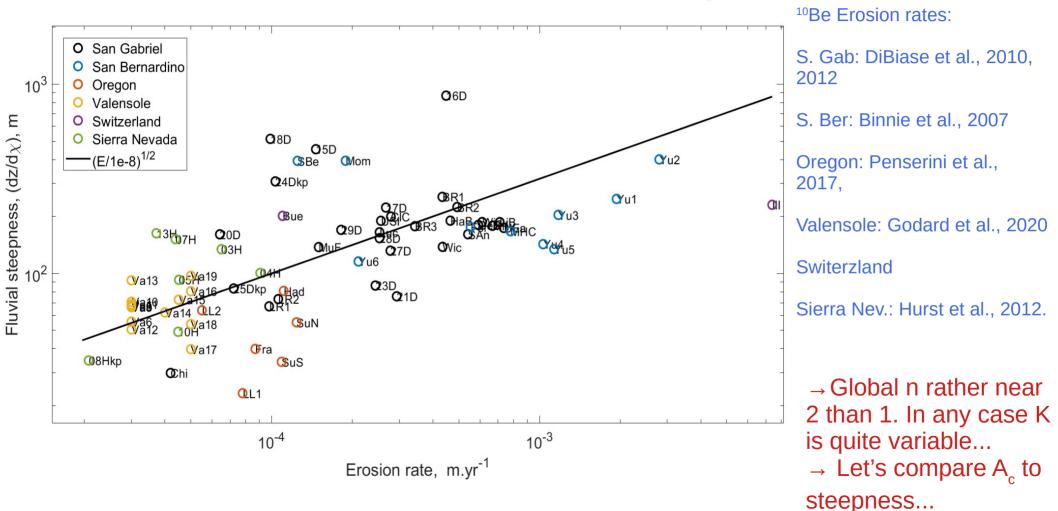


2) Sdf can be pretty low ~0.2 (10°) But not inconsistent with DF angle of arrest.

3) Unclear for A_c .

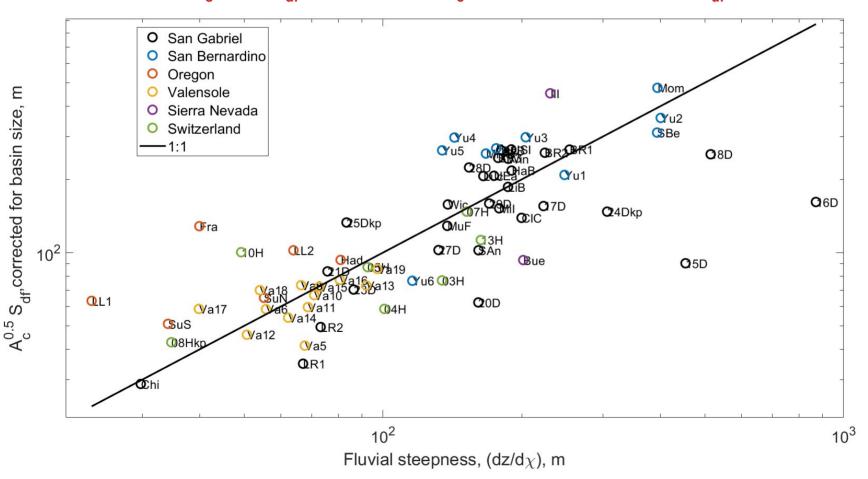
→ However we saw (slide 4) that S_{df}A_c
scales with U/K.
What about variability in K ?

Steepness against erosion: we expect $k_s = (E/K)^{1/n}$

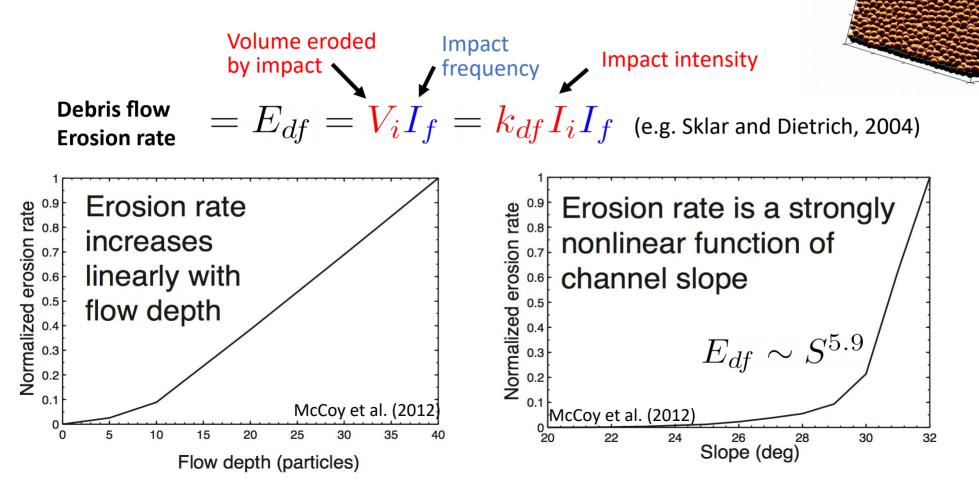


Debris-flow steepness match fluvial steepness

So knowing k_s and S_{df} we can find A_c ! But what controls S_{df} ?



Debris-flow mechanics from granular model (courtesy S. McCoy/ L. McGuire)



Implications of granular model scaling:

 $E_{df} \propto H_{df} \left(\frac{dz}{dx}\right)^{n_{df}}$, with $n_{df} \sim 5-6$, and H_{df} the DF flow height, proportional to initial volume, V_{i} . Further the long term erosion will depend on DF frequency, yielding: $E_{df} \propto F_{df} V_{i} \left(\frac{dz}{dx}\right)^{n_{df}}$

At steady-state U=E_{df} and the $F_{df}V_i$ should be proportional to the sediment flux equal to UA_{hs}.

Assuming
$$A_{hs} = w_c X_{hs}^2$$
 we obtain: $U = E_{df} \propto U X_{hs}^2 \left(\frac{dz}{dx}\right)^{n_{df}}$

And therefore:

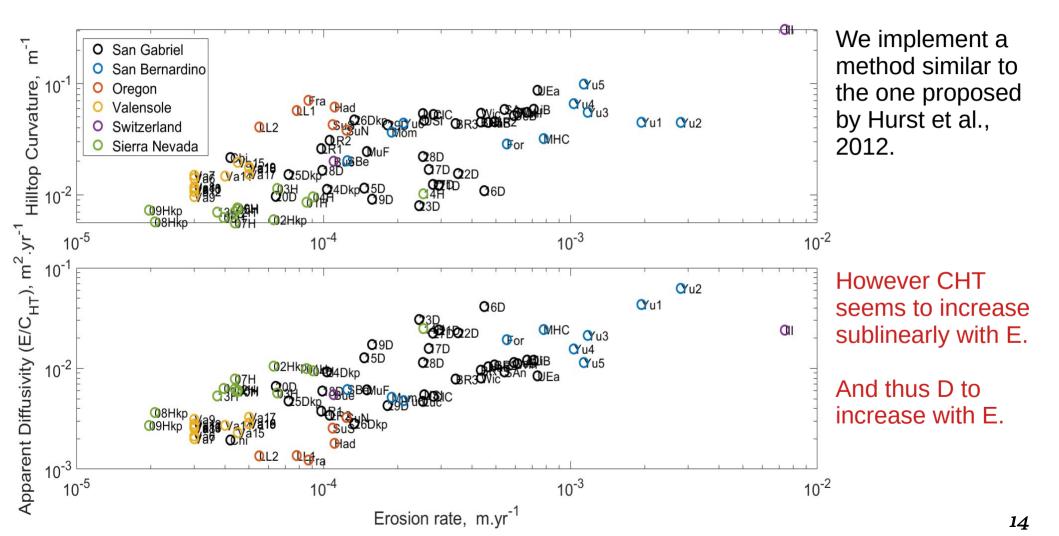
$$S_{df} \propto X_{hs}^{-2/n_{df}}$$

Can we validate this scaling ? What control X_{hs} ? If we assume a simple diffusive hillslope that ends when its gradient is reaching S_{df} , (i.e., S_{df} =UX_{hs} / D) we obtain :

$$S_{df} \propto \left(\frac{U}{D}\right)^{\frac{2}{(n_{df}+2)}} \qquad \qquad X_{hs} \propto \left(\frac{D}{U}\right)^{\frac{n_{df}}{(n_{df}+2)}}$$

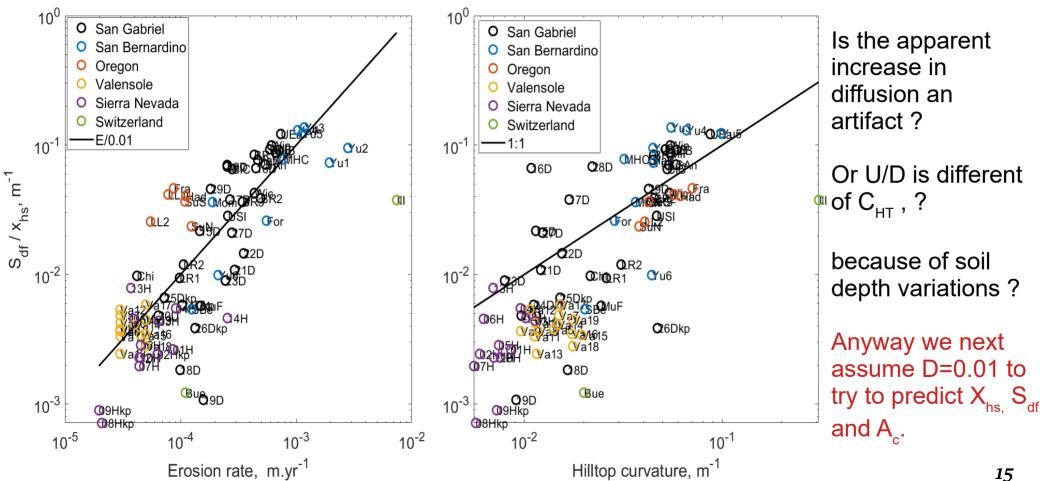
 \rightarrow We also need to constrain D! For example by extracting hilltop curvature.

Estimation of Hilltop curvature and diffusivity



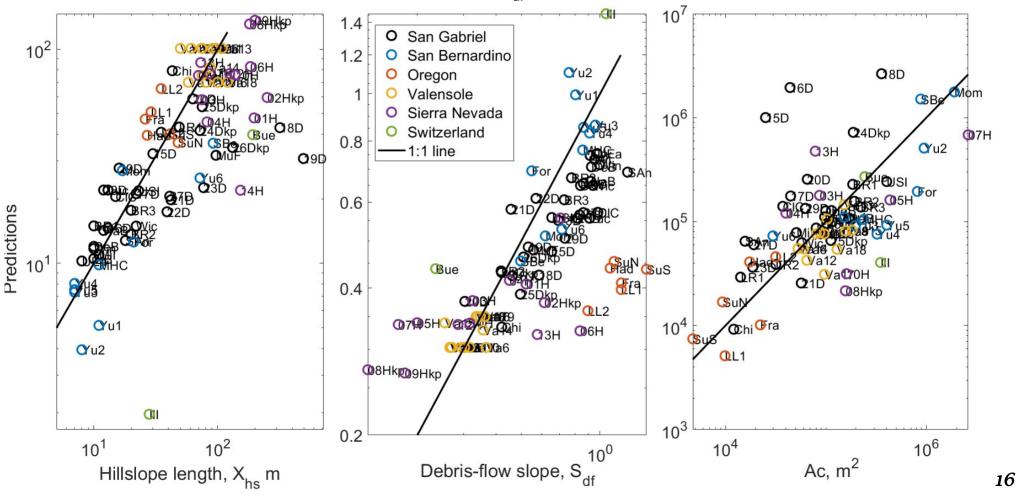
Hillslope length and maximum slope:

Diffusion theory : $S_{hs} = U/D X$; $U/D = C_{HT}$. Is max $(S_{hs}) = S_{df}$? \rightarrow matches better E/0.01 than C_{ht}



Predictions based on global parameters

Variable : E, K; Fixed : D=0.01; n=2; m=1 ; n_{df} =5 ; Hacks constant. Eq. On slide 4 and 13.



Conclusions:

With LIDAR and ¹⁰Be data we constrained relations between erosion rate E, fluvial erodibility K, hillslope diffusivity D and debris flow parameters A_c and S_{df} . Our major findings are:

→ Fluvial network systematically overprinted by DF upstream of 0.5-5 km². The upstream limit of SPIM can be found based on A_c , when knowing S_{df} and the steepness.

As a result a DF-corrected version of χ is proposed and validated (as in Hergarten et al., 2016).

→ We found S_{df} between 0.2 and 0.9, varying with E but also with the length of diffusive hillslopes, $X_{hs.}$ Although it does not match perfectly with our estimate of D based on curvature, the assumption that hillslopes are diffusive and end where their gradient reach S_{df} is fair.

→ The (bidirectional) coupling of X_{hs} and S_{df} means that, knowing U, D and DF mechanics constant allow to predict X_{hs} and S_{df} . Then knowing fluvial steepness, A_c can be found and a profile from divide to the fluvial domain can be fully predicted.

Future work : \rightarrow Include variable m/n (in this presentation we fixed m/n=0.5, often but not always matching the best-fit to the data...)

- \rightarrow Better understand the relations between E, D and C_{ht}.
- \rightarrow Implement the predictions into the numerical model DAC (Divide And Capture).