Background 000000	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions 0	References

The Compost Bomb

Joe Clarke Paul Ritchie Peter Cox

University of Exeter

06 May 2020

Joe Clarke, Paul Ritchie, Peter Cox

The Compost Bomb

Background ●00000	Analytic Model	Numerical Simulations	Conclusions and Further Questions 0	References

Background

- Soils contain around 1000 Pg of carbon, and so will play a critical role in climate change.
- Carbon enters the soil through NPP, Π, and leaves the soil through decomposition caused by soil respiration.
- Respiration increases with temperature and is exothermic.
- Possibility of a runaway feedback leading to an explosive release of carbon.
- Occurs in compost heaps and so has been termed the compost bomb.
- Does this happen in nature, and will it become more common as the Earth warms?

Image: A math a math

Background	Analytic Model	Numerical Simulations	Conclusions and Further Questions	References
00000				

Model respiration using a Q_{10} function, which is the factor the rate increases by for every 10 degrees of temperature increase. $Q_{10} \sim 2.0$.

$$\mu \frac{\mathrm{d}T_{s}}{\mathrm{d}t} = -\lambda \left(T_{s} - T_{a}\right) + AC_{s}r_{0}Q_{10}^{\frac{1}{10}(T_{s} - T_{\mathrm{ref}})}$$
(1)
$$\frac{\mathrm{d}C_{s}}{\mathrm{d}t} = \Pi - C_{s}r_{0}Q_{10}^{\frac{1}{10}(T_{s} - T_{\mathrm{ref}})}$$
(2)

University of Exeter

Here T_s is the soil temperature, T_a is the air temperature, A is the specific heat of respiration, C_s the soil carbon. The heat capacity and the conductivity are given by μ and λ .¹

¹C. M. Luke and P. M. Cox. "Soil carbon and climate change: From the Jenkinson effect to the compost-bomb instability". In: *European Journal of Soil Science* 62.1 (2011), pp. 5–12.

Joe Clarke, Paul Ritchie, Peter Cox

The Compost Bomb

Background 00●000	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions 0	References

- This model is dynamically excitable and susceptible to rate-dependent tipping.
- The system will tip if the air temperature increases fast enough
 - Unlike conventional bifurcation tipping which happens if a parameter exceeds some critical value.

With rapid enough warming the system tips and a compost bomb goes off after 15 years.

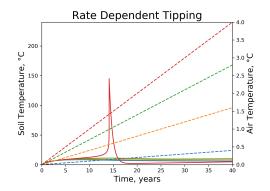


Figure: Dashed lines give the air temperature, solid lines the soil temperature

Joe Clarke, Paul Ritchie, Peter Cox

University of Exeter

Background 0000●0	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions 0	References

Problems

- This is a very idealised model
- It neglects processes like hydrology and diffusion which might suppress the compost bomb
- It assumes respiration is controlled only by temperature and the quantity of soil carbon
- The value of λ depends on the vertical discretization of the soil column.

< 口 > < 同 >

< ∃ >

Background 00000●	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions 0	References

This motivates studying more complicated setups. To make things tractable, we examine the case where $\dot{C}_s = 0$ which leads to a traditional saddle node bifurcation at a critical air temperature.

Background	Analytic Model	Numerical Simulations	Conclusions and Further Questions	References
	000			

Modelling the Effect of Diffusion

We consider a column of soil, depth H, which has respiration and heat diffusion

$$\mu \frac{\partial T_s}{\partial t} = \kappa \frac{\partial^2 T_s}{\partial z^2} + \frac{A C_s r_0}{H} e^{\alpha (T_s - T_{ref})}$$
(3)

Despite its nonlinearity, the steady state has an exact solution!

$$T_{s}(z) = T_{0} + \frac{1}{\alpha} \ln \left(\operatorname{sech}^{2} \sqrt{e^{\alpha T_{0}} \frac{\kappa}{\kappa_{0}} \frac{(z+H)^{2}}{4H^{2}}} \right)$$
(4)

with $\kappa_0 = \alpha A r_0 C_s H e^{-\alpha T_{ref}}$

University of Exeter

Image: A math a math

Joe Clarke, Paul Ritchie, Peter Cox

The Compost Bomb

Background	Analytic Model	Conclusions and Further Questions	References
	000		

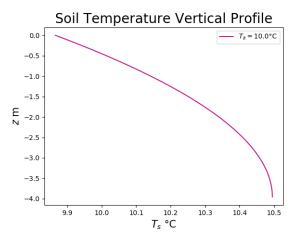


Figure: Vertical Temperature Profile of the Soil

Joe Clarke, Paul Ritchie, Peter Cox

The Compost Bomb

University of Exeter

A B > 4
B > 4
B
B > 4
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

The upper boundary condition gives a critical T_a above which the solution does not exist — a compost bomb.

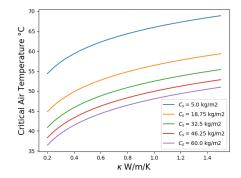


Figure: Critical Air temperature dependence on κ

Joe Clarke, Paul Ritchie, Peter Cox The Compost Bomb University of Exeter

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Background 000000	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions 0	References
JULES				

JULES is a sophisticated land surface scheme, which presently does not account for the effect of respiratory heating on soil temperature. We added a respiratory heating term and managed to get compost bombs to go off.

This is an example of a compost bomb going off just before the year 2000 in the JULES model.



Figure: Soil temperature of one grid box from a JULES run with historical temperature forcing.

Joe Clarke, Paul Ritchie, Peter Cox

University of Exeter

Background 000000	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions •	References

Conclusions

Compost bombs can go off in more complicated systems, and we have derived a relationship between the critical air temperature for a compost bomb and in principle measurable parameters. Future work will work out *where* we might see a compost bomb and under which conditions. We will also investigate candidate compost bomb events, such as the 2010 Russian wildfires.

Background 000000	Analytic Model 000	Numerical Simulations	Conclusions and Further Questions 0	References

Further Reading

- S. Wieczorek et al. "Excitability in ramped systems: The compost-bomb instability". In: *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 467.2129 (2011), pp. 1243–1269.
- Andrew J. Wiltshire et al. "JULES-GL7: The Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2". In: *Geoscientific Model Development* 13.2 (2020), pp. 483–505.
- C. M. Luke and P. M. Cox. "Soil carbon and climate change: From the Jenkinson effect to the compost-bomb instability".
 In: European Journal of Soil Science 62.1 (2011), pp. 5–12.