Modeling wormhole formation in digital rock samples: the role of segmentation and permeability-porosity relationships

Rishabh Prakash Sharma [1,2], Max P. Cooper[2], Anthony J.C.
Ladd[3], and Piotr Szymczak[2]

1. Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland (rsharma@igf.edu.pl)
2. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
3. Chemical Engineering Department, University of Florida, Gainesville, FL, USA

Introduction

- Dissolution of pore matrix by reactive fluids creates these beautiful patterns aka wormholes.
- The dissolution process is complex because of interaction of reactive fluid and medium.
- These dissolution channels can be numerically studied either with Darcy-models or with pore-scale models.

Sample used in Numerical simulation

Fig-1: Slice of Wierzbica limestone sample

- Wierzbica limestone sample with porosity in range $15-20 \%$ and permeability around 2 mD is used in numerical simulation.
- XCMT images of 60micron resolution are obtained.
- These images are further processed to remove

Fig-2: Wierzbica limestone sample with dimensions

Segmentation

3-phase segmentation

- Segmentation is done by distinguishing the pores and solid matrix phase.
- Using the threshold value of pores and grains, porosity of subresolved phase is calculated [1]
[1] Luquot, L., Rodriguez, O., and Gouze, P.: Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes, Transport Porous Med., 101, 507-532, 2014.

Modeling

Constant pressure at outlet

- Darcy-Brinkman Equation

$$
\frac{-\mu}{\phi} \nabla^{2} V+\frac{\mu}{K(\phi)} V=-\nabla p
$$

- Convection-Diffusion-Reaction

$$
-V \nabla c+\nabla \cdot(D \phi \nabla c)-R(c)=0
$$

- Kinetic rate law

$$
R(c)=k s(\phi) c
$$

- Porosity evolution

$$
\frac{d \phi}{d t}=R(c) v
$$

We are using an OpenFOAM based solver, PorousFOAM developed by Tony Ladd (https://github.com/tonyladd/porousFoam)

Modeling

- Porosity (ϕ)-Permeability (K) relation:

$$
K=K_{0} \frac{\phi^{n}}{(1-\phi)^{2}}
$$

- Model of reactive surface area:
- Sugar-Lump model

- Constant area model

$$
s(\phi)=\text { const }
$$

Now by following the Darcy-scale models, can we correctly predict the wormhole formation?

Wormholes as porosity contours

(a)

(b)

Fig-3: Comparison of porosity contours of (a) lab-dissolved core with (b) simulated wormhole using Carman-Kozeny ($n=3$) porosity-permeability relation and sugar lump model

Other numerical experiments

Wormholes as porosity contours

Fig-4: Wormhole with $\mathrm{n}=6$ using sugar lump model

Fig-5: Wormhole with $\mathrm{n}=10$ using sugar lump model

Wormholes as porosity contours

Fig-6: Comparison of porosity contours lab-dissolved core (a) with simulated wormhole (b, c) for $\mathrm{n}=6$ using constant reactive surface area model

Conclusion

- The simulated wormholes are thicker than experimental wormholes.
- Higher thickness of simulated wormhole shows limitation of Darcy scale models.
- Numerical study of dissolution of pore matrix is very sensitive to reactive surface area models and porosity-permeability exponent.

Questions and Suggestions are welcomed

