

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss GERICS Climate Service Center Germany An institution of Helmholtz-Zentrum Geesthacht

Can the latest generation of regional climate models reproduce European snow conditions and How do biases translate into uncertainties of snow cover projections?

Katharina Bülow¹ Sven Kotlarski² Christian Steger³ Claas Teichmann¹

¹ Climate Service Center Germany (GERICS), Hamburg ² Federal Office of Meteorology and Climatology MeteoSwiss, Zurich ³ Institute for Atmospheric and Climate Science, ETH Zurich, Zurich

The evolution of snow is relevant...

- Important natural water ressource (hydropower, water supply etc.)
- Importance for tourism and recreation in many regions
- **Natural hazards** (snow avalanches, spring meltwater, ...)
- Ecology, Agriculture, ...

- Feedback to the atmosphere!
- Past decline of snow cover on hemispheric scales

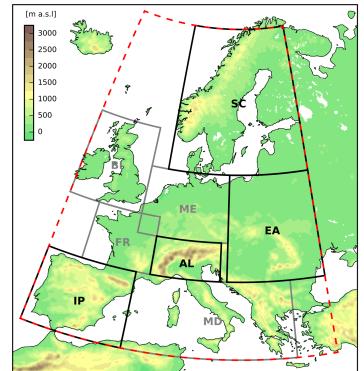
Objectives and Data

OBJECTIVES

- Evaluate state-of-the-art RCMs in terms of snow cover representation
- Derive **21st Century snow cover changes** on European scale

DATA

- EURO-CORDEX RCM ensemble at 12 km resolution (EUR-11)
- **11** reanalysis-driven simulations
- 84 GCM-driven simulations (18 x RCP2.6, 17 x RCP4.5, 49 x RCP8.5)


Evaluation domain and methods

Regions

- Analysis for PRUDENCE domains (Christensen and Christensen, 2007)
- Focus on regions with complex topography and/or high latitude: Alps (AL), Scandinavia (SC), Eastern Europe (EA), Iberian Peninsula (IP) and entire Europe (--)

Methods

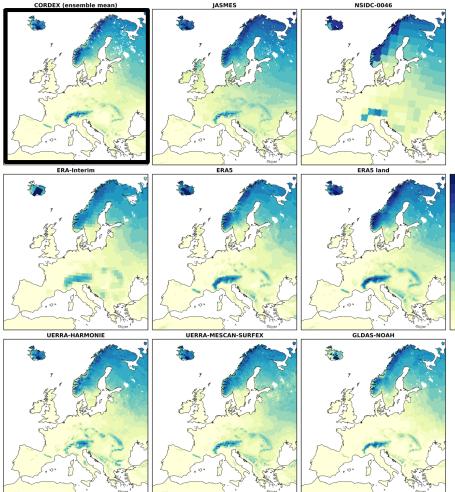
- Snow day definition: \geq 3 cm snow depth
- Conversion of snow water equivalent (SWE) to snow depth with constant snow density: 312 kg m⁻³ (Sturm et al., 2010)
- Indicators: SWE, snow-covered area, snow-covered period

Part I Model Evaluation

Reference snow datasets

Abbreviation	Name	Туре	Spatial resolution	Temporal resolution*
ERA-Int	ERA-Interim	Reanalysis	~80 km	daily
ERA5	ERA5	Reanalysis	~30 km	daily
ERA5-Land	ERA5-Land	Land surface model	~9 km	daily
GLDAS	GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.0	Land surface model	~30 km	daily
UERRA-H	UERRA-HARMONIE	Reanalysis	~11 km	daily
UERRA-MS	UERRA MESCAN-SURFEX	Land surface model	~5.5 km	daily
JASMES	JASMES Northern Hemisphere daily snow cover extent	Remote sensing	~5 km	daily
NSIDC-0046	Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent V4	Remote sensing	~25 km**	weekly
NSIDC-0271	Global Monthly EASE-Grid Snow Water Equivalent Climatology V1	Remote sensing	~25 km	monthly
GlobSnow	GlobSnow v3.0 NH SWE	Remote sensing	~25 km	daily

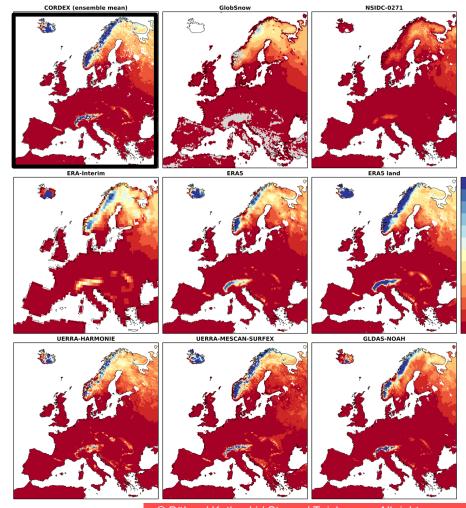
*The temporal resolution refers to the one download.


**The native spatial resolution of the land snow observations used for this product (NOAA/NCDC

Climate Data Record of Northern Hemisphere Snow Cover Extent) is ~190 km.

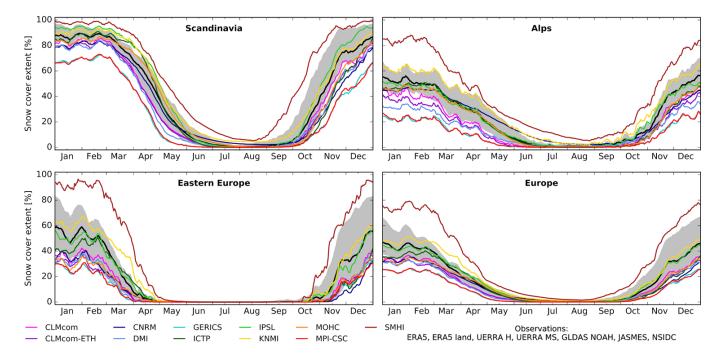
Snow cover duration

- Yearly snow cover duration [days per year] averaged over 1989 -2008* as represented by the CORDEX ensemble (ERA-Interim driven; black outline) and different observational and reanalysis datasets
- Generally very good agreement between CORDEX ensemble mean and reference data


*without the years 1994/1995 due to data gaps in the JASMES dataset

160 140 120

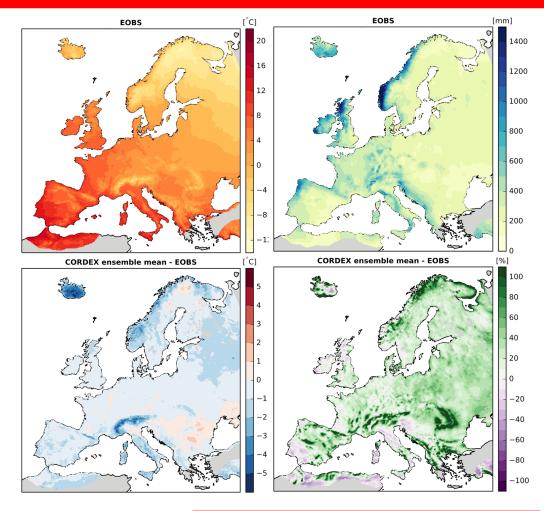
Mean Winter SWE


- Mean winter (NDJFMA) SWE [mm] over 1989 - 2006 as represented by the CORDEX ensemble (ERA-Interim driven, black outline) and different observational and reanalysis datasets
- CORDEX ensemble mean reveals higher SWE values in mountainous areas than most reference datasets
- Satellite-derived SWE products generally indicate lower SWE values (particularly NSIDC-0271)

© Bülow / Kotlarski / Steger / Teichmann. All rights reserved.

 $\begin{array}{c} 240 \\ 220 \\ 200 \\ 180 \\ 160 \\ 140 \\ 120 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \end{array}$

Annual cycle of snow cover extent

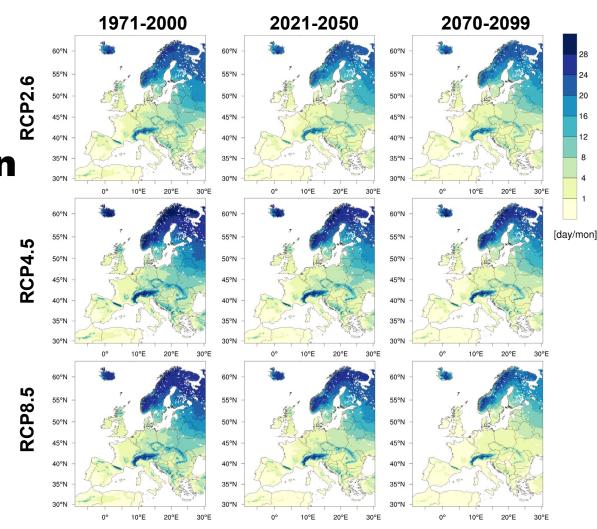


 Daily snow cover extent [% of total area] averaged over 1989 - 2008* as represented by the CORDEX ensemble mean (ERA-Interim driven) and different observational and reanalysis datasets (grey shading) *without the years 1994/1995

Biases in forcing

- Winter (NDJFMA) mean air temperature and precipitation for E-OBS and CORDEX ensemble mean (ERA-Interim driven; CORDEX - EOBS) averaged over 1989 - 2008*
- RCMs indicate a general cold and wet bias; particularly in mountainous regions.

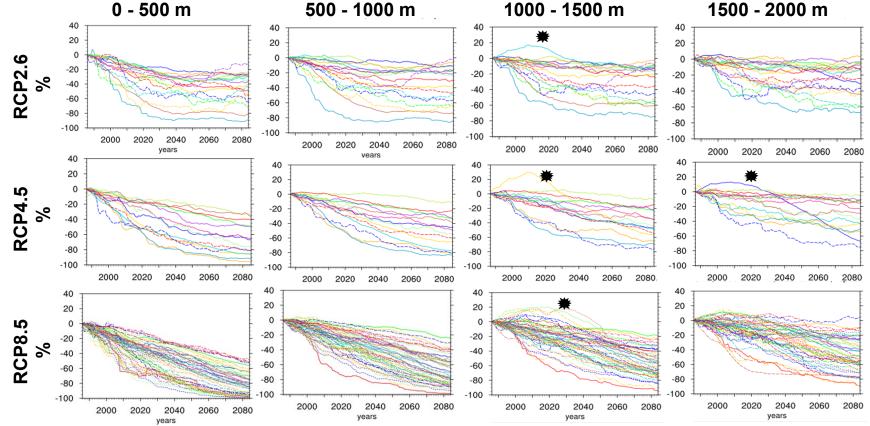
*without the years 1994/1995 due to data gaps in the JASMES dataset


Part II Future Projections

Note: preliminary results still under investigation!

Number of Snowdays (NDJFMA) Ensemble mean

- All three emission scenarios show a similar reduction till 2050
- RCP2.6 no further reduction after 2050
- RCP8.5 depicts the strongest reduction


(Values in the historical time period vary due to different ensemble members and size)

(otlarski

SWE change Scandinavia

30-year running mean change compared to (1971-2000) [%]

reserved rights

₹

eichmann.

Steger

Kotlarski

Bülow

★ needs revision

Summary and conclusions

- RCM-simulated snow cover overall realistic, but important high-elevation biases possible
- Possible reasons: (a) biased atmospheric forcing (b) missing/inappropriate treatment of perennial snow (c) neglect of important processes by simplified RCM snow cover schemes
- Climate scenarios indicate important reduction of European snow cover by end of 21st Century, even for RCP2.6
- Scandinavia/Alps: **Almost complete loss** at low elevations for RCP8.5
- Strong control by **temperature changes** and, hence, by **driving GCM**
- **Agreement** with earlier regional-scale studies using offline snow cover models

THANK YOU

Contact:

katharina DOT buelow AT hzg DOT de sven DOT kotlarski AT meteoswiss DOT ch christian DOT steger AT env DOT ethz DOT ch claas DOT teichmann AT hzg DOT de

References

- Christensen and Christensen (2007): A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Climatic Change, 81:7–30, doi: 10.1007/s10584-006-9210-7
- Sturm et al. (2010): Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes, Journal of Hydrometeorology, 11:1380-1394, doi: 10.1175/2010JHM1202.1

The present work is planned to be submitted to the journal «Atmosphere» (Special Issue «Cryosphere in and around Regional Climate Models», see https://www.mdpi.com/journal/atmosphere/special_issues/cryophere_climate_models)