

Improving future optical Earth Observation products using transfer learning

Peter Kettig, Eduardo Sanchez-Diaz, Simon Baillarin, Olivier Hagolle, Jean-Marc Delvit, Pierre Lassalle, and Romain Hugues

CNES, CESBIO, IRT – Toulouse, France

Table of contents

- Context
- State of the art
- Methods used
- Results
- Discussion
- Conclusion

Context

- CNES has access to a multitude of optical image products
 - Sentinel2
 - Venus
 - Pleiades
 - ...
- Database is only partially labeled today
- \rightarrow Cloud detection first step for labeling process
- Cloud screening modules specifically designed for each sensor:
 - <u>Maja</u>
 - <u>SVM</u>
 - •

→ Can we use the existing database and processing chains as 'a priori' for future platforms for this labeling task?

EGU 2020 - CNES 2020 All rights reserved

Microcarb

Context

Database is still growing:

- New platforms to be equipped with cloud detection modules:
 - MicroCarb
 - CO3D
- Specifications for those still TBD; no simulated products
- Existing modules highly dependent on geometric and radiometric attributes

Methods used

- Training database:
 - Sentinel-2 scenes (tiles) and binary cloud-mask from existing processing chains :
 - <u>Maja</u>
 - <u>Fmask</u>
 - DEM (Terrain model)
- Validation database:
 - Semi-automatically labeled cloud masks (using <u>ALCD</u>)
- Inference: Transfer of Spot-4/5 scenes with DEM and same band configuration

Methods used

- Selection of bands that exist for other platforms (such as SPOT/Pleiades):
 - Red (B4)
 - Green (B3)
 - Blue (B2)
 - NIR (B8)
 - SWIR (B11)
- Using lowered resolution (Original processors also work at reduced resolution)
- \rightarrow Comparison on equal basis

Methods used

Network characteristics:

- Unet with batchnorm and dropout
- Loss: BCE with Dice
 - Highly imbalanced dataset (only 20% of all training pixels considered 'cloudy')
- Optimizer: Adam
- Automatic hyperparameter optimisation using <u>HyperOpt</u> for dropout fraction and filter size

→ Use trained model to infer cloud masks on pre-formatted SPOT and Pleiades imagery

Results

Training: Sentinel-2

Inference: Sentinel-2

EGU 2020 - © CNES 2020 All rights reserved

Validation – Sentinel-2

 $F_{\beta} = (1 + \beta^2) * \frac{(precision*recall)}{(\beta^2*precision)+recall}$ with $\beta = 2$

- Different cloud classes are unified into one
- Comparison using masks provided by existing cloudscreening processors

Algorithm	F2-score in %
Maja	91
FMask	90
CloudDL	88
CloudDL with DEM	90

Results

Training: Sentinel-2 Validation: SPOT-4 and -5

EGU 2020 - © CNES 2020 All rights reserved

Validation – Spot4/5

- Different cloud classes are unified into one
- Comparison using masks provided by existing cloudscreening processors

Algorithm	Fscore in %
Maja	91
CloudDL	85
CloudDL (with DEM)	89

Conclusion

- Transfer learning using band adaptation possible
- Results are robust to image quality variations (radiometrically and geometrically)
- Adaptation to other sensors (Pleiades) ongoing

→ Future EO products can be improved using transfer learning and existing databases

Conclusion

- Method ready to be adapted to future platforms, following these steps:
 - Coarse pre-flight model for development purposes
 - Once first 'real' images are acquired during LEOP, a dedicated validation database needs to be built
 - Using real images and the new validation database, a refined model for production purposes is trained
 - Throughout instrument lifetime: Regular quality-assurance tests and possible re-training using new samples if quality-gate not met

Thank you

Contact:

Peter.kettig@cnes.fr

EGU 2020 - © CNES 2020 All rights reserved