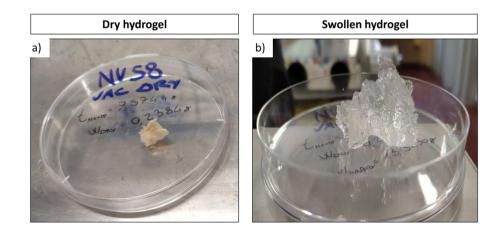


Università degli Studi di Padova

Investigating hydrogel potentialities for improving soil pore network by using X-ray computed microtomography

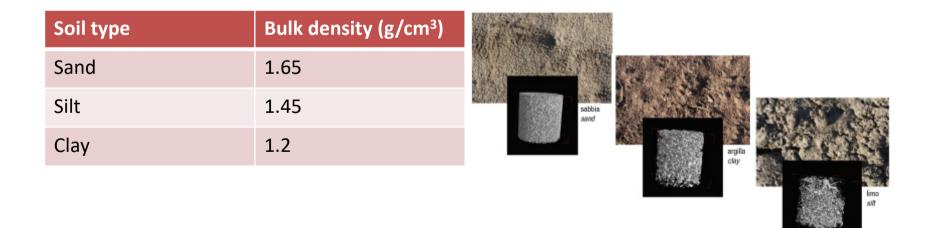

Piccoli I.^{a*}, Pozza S.^a, Camarotto C.^a, Squartini A.^a, Guerrini G.^b, Morari F.^a

^a DAFNAE Department., Padova University, Italy ^b Chemical Sciences Department, Padova University, Italy

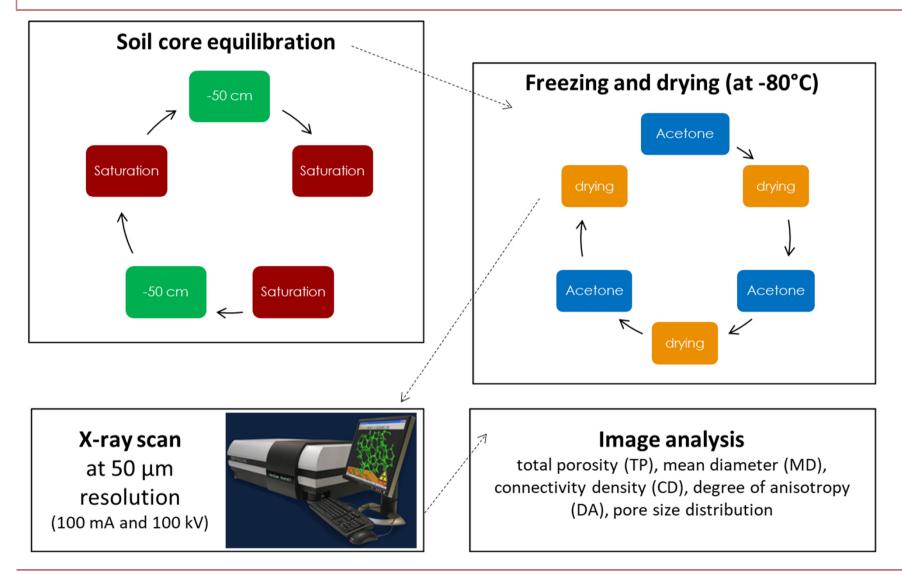
* contact: <u>ilaria.piccoli@unipd.it</u>

Background

- Hydrogels (HGs) are conventionally defined as a natural or synthetic polymeric 3D networks with high hygroscopicity and water-swelling properties
- HGs unique physical properties, e.g., porosity and swellability, make them ideal platforms for water and nutrient delivering. For these reasons, increasing attention has been given to HGs for agronomic purpose
- The aim of this study was to investigate the potentialities of two HGs for improving porosity of three soil types



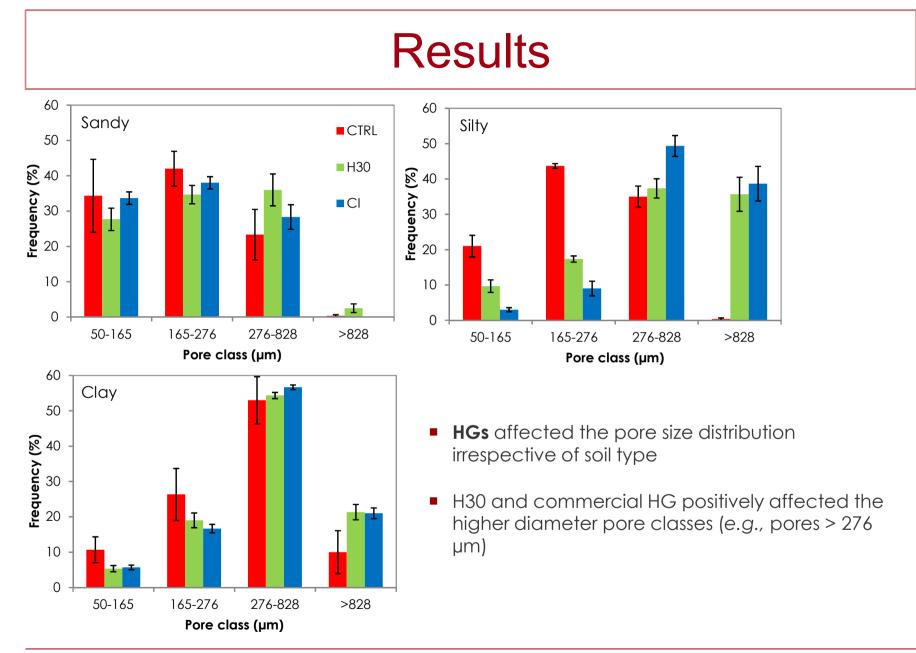
Materials & methods


2 HGs types («H30» and «commercial») were mixed with 3 different soils («sand», «silt» and «clay»)

		HG type	Composition	Weigth fraction (w/w)
		H30	Carboxymethyl cellulose, humic acids, clay	4 ‰
		Commercial «C»	Polyacrylamide	4 ‰

Materials & methods

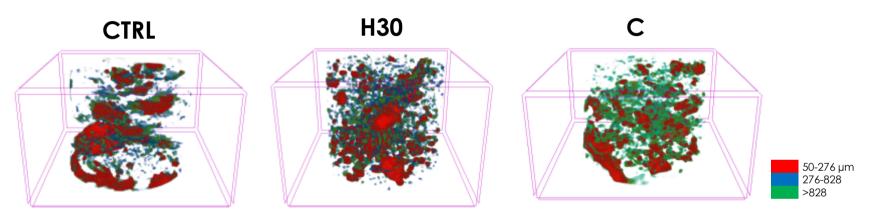
© Piccoli et al. All rights reserved

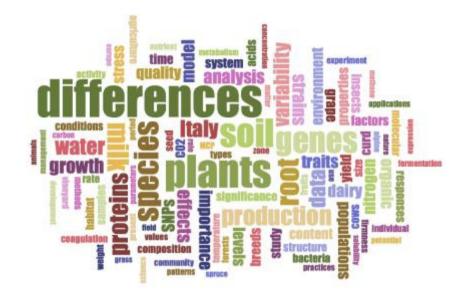

Results

Sandy			Sity			Clay			
	CTRL	H30	С	CTRL	H30	С	CTRL	H30	С
TP (%)	0.98	1.16	0.77	3.6	10.5	17.3	5.13	10.21	8.72
MD (µm)	217	282	233	247	691	770	404	568	568
CD (µm ⁻³)	6.20E -06	7.66E-06	4.05E-0.6	1.25 E-05	1.70E-0.5	1.99 E-0.5	1.26	1.63E-05	1.24E-05
DA	0.64	0.51	0.45	0.66	0.51	0.35	0.58	0.36	0.39

TP: total porosity; MD: mean diameter; CD: connectivity density; DA: degree of anisotropy

- HGs increased TP and MD depending on soil types, observing higher increase in silty and clay soils
- HGs did not affect pore morphological indices (CD and DA)




Conclusions and prospectives

Present study demonstrated that in fine-textured soils at high water content, HG might be a valuable tool to increase not simply the TP but, in particular, the macroporosity fraction which may play a key role in soil functioning and ecosystem services

 Future research will investigate the HG performances under dynamic soil moisture conditions on water holding capacity and hydraulic conductivity

Thank you for the attention

InnoGel project

http://wwwdisc.chimica.unipd.it/innogel/

Progetto sostenuto dalla

Nell'ambito del Bando

© Piccoli et al. All rights reserved 4 May 2020 – European Geoscience Union General Assembly 2020 SSS7.5 Novel sorbent materials for environmental remediation

Università degli Studi di Padova