Union-wide
Inter- and Transdisciplinary Sessions
Disciplinary sessions AS–GM
Disciplinary sessions GMPV–TS

Session programme

SSS7

SSS – Soil System Sciences

Programme group chair: Claudio Zaccone

SSS7 – Soil Pollution and Reclamation

Programme group scientific officers: Jaume Bech, Elena Korobova, Miriam Muñoz-Rojas, Maria Manuela Abreu

SSS7.2

Terrestrial ecosystems including forests and grasslands provide critical functions and services such as provision of food, fibre and fuel, water and air purification and climate regulation among others. However, the ability to perform such services is seriously threatened due to global change, e.g. climate modifications and land use intensification. Overall, land degradation affects more than 52 billion hectares of land around the world. This is caused to a large extent by anthropogenic activities such as land abandonment, mining activities, deforestation and inadequate ecosystem management.
Disturbance or insufficient rebuilding of the soil system services can modify the ecosystem functions and services, and, in the absence of appropriate management and restoration, functional landscapes and ecosystem would remain in a degraded state or continue to decline. Therefore, effective ecosystem management as well as restoration and rehabilitation of degraded land is critical to support essential functions and services in terrestrial ecosystems.

In this session, we welcome contributions covering research conducted in this area of research describing experimental, observational, and theoretical studies. Topics of interest are (although not limited to a) management of forest and grassland ecosystems, b) global change effects on ecosystems, c) causes and impacts of ecosystem/land degradation and remedial actions and strategies for restoration at local, regional or global scales

Share:
Convener: Miriam Muñoz-Rojas | Co-conveners: Thomas Baumgartl, Paloma Hueso GonzálezECSECS, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema
Displays
| Attendance Mon, 04 May, 08:30–10:15 (CEST)
SSS7.3

The growing amount of data on chemical composition of soils all over the world shows constantly increasing anthropogenic activity accompanied by emissions of chemical elements and compounds in quantities exceeding natural background levels which leads to contamination of basic foods of plant and animal origin. However, the diversity of pollution sources and their location in different climatic, physiographic and geochemical conditions require not only constant monitoring of the soil condition, but also the development of differentiated approaches to assess and prevent the risk of pollution. The development of technologies for the rehabilitation of soil properties, including its fertility is also a challenge. The problem of soil monitoring and rehabilitation is becoming increasingly topical due to population expansion to abandoned mining areas as well as other industrial areas. We invite researchers to share their ideas and results of studying soil contamination/rehabilitation at various spatial levels - from children's and sports grounds to large cities, abandoned and active areas of mining, agricultural areas, etc.. Studies of the site-specific forms of occurrence, migration and accumulation of rare earth and potentially hazardous elements in soils, from different natural and anthropogenic transformed substrata are particularly welcome. We consider it especially important to evaluate the variation and spatial distribution of natural and man-made associations of macro- and microelements as a key to understanding the dynamics of the existence and sustainability of natural and anthropogenic substances and their spatial structures formed in soils that you need to know to return to safe operation of polluted land.

Public information:
The growing amount of data on chemical composition of soils all over the world shows constantly increasing anthropogenic activity accompanied by emissions of chemical elements and compounds in quantities exceeding natural background levels which leads to contamination of basic foods of plant and animal origin. However, the diversity of pollution sources and their location in different climatic, physiographic and geochemical conditions require not only constant monitoring of the soil condition, but also the development of differentiated approaches to assess and prevent the risk of pollution. The development of technologies for the rehabilitation of soil properties, including its fertility is also a challenge. The problem of soil monitoring and rehabilitation is becoming increasingly topical due to population expansion to abandoned mining areas as well as other industrial areas. We invite researchers to share their ideas and results of studying soil contamination/rehabilitation at various spatial levels - from children's and sports grounds to large cities, abandoned and active areas of mining, agricultural areas, etc.. Studies of the site-specific forms of occurrence, migration and accumulation of rare earth and potentially hazardous elements in soils, from different natural and anthropogenic transformed substrata are particularly welcome. We consider it especially important to evaluate the variation and spatial distribution of natural and man-made associations of macro- and microelements as a key to understanding the dynamics of the existence and sustainability of natural and anthropogenic substances and their spatial structures formed in soils that you need to know to return to safe operation of polluted land.

Share:
Convener: Maria Manuela Abreu | Co-conveners: Jaume Bech, Elena Korobova, Carmen Pérez-Sirvent, Erika Santos
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)
SSS7.4

Bioremediation and biomining techniques involve the i) extraction of inorganic pollutants or economically valuable elements from soils or technogenic substrates , ii) stabilization of potentially toxic elements in the root zone of plants as well as iii) the microbial degradation of organic pollutants. Generally these techniques are considered as cost-effective and environmentally friendly technologies for the in situ restoration of the health and productive capacity of soils, mitigating environmental impacts of impaired soils, and last but not least, the recovery of raw materials. Optimization and establishment of these technologies requires a sound understanding of soil-associated factors and plant-associated factors as well as root-soil-microbial interactions in the rhizosphere of plants controlling the mobility and availability of the target compounds in soils.

This session aims to bring together contributions of all aspects of biomining and bioremediation research including the effects of rhizosphere processes, soil management and microbial leaching.
This includes, among others:

-advances in the understanding of functions of plant-soil-microbe interactions

-factors influencing the mobility (leaching) of target elements or soil contaminants

-distribution of target elements inside the organisms

-final recovery of metals from accumulator plants or leachates

We welcome presentations of laboratory and field research results as well as theoretical studies. We intend to bring together scientists from multiple disciplines. Young researchers are especially encouraged to submit their contributions. Furthermore, we plan to publish the outcome of this session in a special issue of an internationally indexed journal.

Share:
Convener: Oliver WicheECSECS | Co-conveners: Charlotte DietrichECSECS, Jelena Dragisic Maksimovic, Balázs Székely
Displays
| Attendance Thu, 07 May, 10:45–12:30 (CEST)
SSS7.5

Sorbent materials have various environmental applications, i.e. water filtration, separation, and purification. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents. The development and evaluation of novel sorbents requires a multidisciplihttps://meetingorganizer.copernicus.org/EGU2020/so1/35078nary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove contaminants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. Contributions examining the use of novel sorbents for environmental remediation are welcome. More specifically the contributions may be focused on:

• biosorbents: characterization; evaluation;
• biochars: process optimization; physically and chemically activated biochars;
• reactive sorbents: development; characterization; evaluation;
• nanotechnology based sorbents: development; characterization; evaluation;
• development of sorbents, reactive sorbents, or catalysts from geomaterials;
• sorbent-based in-situ remediation of contaminated soils, aquifers and sediments: experimental work; field studies;
• ecotoxicity of novel sorbents.

Share:
Convener: Ioannis Manariotis | Co-conveners: Ioannis AnastopoulosECSECS, David Werner, Hrissi K. Karapanagioti
Displays
| Attendance Mon, 04 May, 14:00–15:45 (CEST)