CR3.1

All components of the cryosphere are strongly impacted by climate change and have been undergoing significant changes over the past decades. Most visibly, glaciers are shrinking and thinning. Snow cover and duration is reduced, and permafrost, in both Arctic and alpine environments, is thawing. Changes in sea ice cover and characteristics have attracted widespread attention, and changes in ice sheets are monitored with care and concern. 
Risks associated with one or several of these cryosphere components have been present throughout history. However, with ongoing climate change, we expect changes in the magnitude and frequency of hazards with profound implications for risks. New or growing glacier lakes pose a threat to downstream communities through the potential for sudden drainage. Thawing permafrost can destabilize mountain slopes, and eventually result in large landslide or destructive rock and ice avalanches. An accelerated rate of permafrost degradation in low-land areas poses risk to existing and planned infrastructure and raises concerns about large-scale emission of greenhouse gases currently trapped in Arctic permafrost. Decreased summertime sea ice extent may produce both risks and opportunities in terms of large-scale climate feedbacks and alterations, coastal vulnerability, and new access to transport routes and natural resources. Eventually, rapid acceleration of outlet glacier ice discharge and collapse of ice sheets is of major concern for sea level change. 
This session invites contributions across all cryosphere components that address risks associated with observed or projected physical processes. Contributions considering more than one cryosphere component (e.g. glaciers and permafrost) are particularly encouraged. Contributions can consider hazards and risks related to changes in the past, present or future. Furthermore, contributions may consider one or several components of risks (i.e. natural hazards, exposure, vulnerability) as long as conceptual clarity is ensured.

Share:
Convener: Christian Huggel | Co-conveners: Michael Krautblatter, Matthew WestobyECSECS
All components of the cryosphere are strongly impacted by climate change and have been undergoing significant changes over the past decades. Most visibly, glaciers are shrinking and thinning. Snow cover and duration is reduced, and permafrost, in both Arctic and alpine environments, is thawing. Changes in sea ice cover and characteristics have attracted widespread attention, and changes in ice sheets are monitored with care and concern. 
Risks associated with one or several of these cryosphere components have been present throughout history. However, with ongoing climate change, we expect changes in the magnitude and frequency of hazards with profound implications for risks. New or growing glacier lakes pose a threat to downstream communities through the potential for sudden drainage. Thawing permafrost can destabilize mountain slopes, and eventually result in large landslide or destructive rock and ice avalanches. An accelerated rate of permafrost degradation in low-land areas poses risk to existing and planned infrastructure and raises concerns about large-scale emission of greenhouse gases currently trapped in Arctic permafrost. Decreased summertime sea ice extent may produce both risks and opportunities in terms of large-scale climate feedbacks and alterations, coastal vulnerability, and new access to transport routes and natural resources. Eventually, rapid acceleration of outlet glacier ice discharge and collapse of ice sheets is of major concern for sea level change. 
This session invites contributions across all cryosphere components that address risks associated with observed or projected physical processes. Contributions considering more than one cryosphere component (e.g. glaciers and permafrost) are particularly encouraged. Contributions can consider hazards and risks related to changes in the past, present or future. Furthermore, contributions may consider one or several components of risks (i.e. natural hazards, exposure, vulnerability) as long as conceptual clarity is ensured.