NH4.3

This session results from a merge of:
NH3.3 - Earthquake-induced landslides: mechanisms, modelling and related hazards
NH4.3 - Seismic microzonation: site effects and ground failures in urban areas.

Field evidence collected after past earthquakes worldwide demonstrated that damage and death toll depend on both the transient and the permanent deformations. They, in turn, are related to earthquake source and path, local geological and geotechnical conditions, structural design and construction features. Seismic microzonation (SM) focuses on the assessment of the first two factors and therefore represents the basis of a sustainable policy for earthquake risk mitigation. It deals with the assessment of ground shaking amplification, but also with the ground failures as landslides, soil liquefaction and ground subsidence. The multiple hazards resulting from these processes commonly are treated separately even though an integrated approach to the problem clearly is desirable. The purpose of this session is to provide a forum for discussion among researchers and other professionals who study amplification of the ground motion and the related ground failures caused by both seismic and volcanic activity and to encourage multidisciplinary research in these fields. Topics of interest include the following:
- Subsoil investigation and characterization for SM mapping;
- Multi-level SM mapping
- Evaluation of seismic site response (1D-2D-3D)
- Case histories of earthquake-triggered landslides, analysed at either local or regional
- Analysis of factors associated with seismically/volcanically-induced landslide occurrence;
- Slope stability and runout modelling of seismically/volcanically-induced landslide;
- Assessments of landslide and other ground-failure hazards in relation to deterministic earthquake and volcanic event scenarios or to regional probabilistic evaluations;
- Application of GIS techniques to evaluate and portray seismic and volcanic ground-failure hazards and risks;
-User requirements regarding risk assessment and persisting challenges.
- Studies on Soil liquefaction

A focused special issue in an EGU-journal will be edited based on the contributions of this session.

Share:
Convener: Giovanni ForteECSECS | Co-conveners: Paolo Frattini, Hans-Balder Havenith, Giovanni Crosta, Filippo Santucci de Magistris, Janusz Wasowski, Patrick Meunier, Chyi-Tyi Lee
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)

This session results from a merge of:
NH3.3 - Earthquake-induced landslides: mechanisms, modelling and related hazards
NH4.3 - Seismic microzonation: site effects and ground failures in urban areas.

Field evidence collected after past earthquakes worldwide demonstrated that damage and death toll depend on both the transient and the permanent deformations. They, in turn, are related to earthquake source and path, local geological and geotechnical conditions, structural design and construction features. Seismic microzonation (SM) focuses on the assessment of the first two factors and therefore represents the basis of a sustainable policy for earthquake risk mitigation. It deals with the assessment of ground shaking amplification, but also with the ground failures as landslides, soil liquefaction and ground subsidence. The multiple hazards resulting from these processes commonly are treated separately even though an integrated approach to the problem clearly is desirable. The purpose of this session is to provide a forum for discussion among researchers and other professionals who study amplification of the ground motion and the related ground failures caused by both seismic and volcanic activity and to encourage multidisciplinary research in these fields. Topics of interest include the following:
- Subsoil investigation and characterization for SM mapping;
- Multi-level SM mapping
- Evaluation of seismic site response (1D-2D-3D)
- Case histories of earthquake-triggered landslides, analysed at either local or regional
- Analysis of factors associated with seismically/volcanically-induced landslide occurrence;
- Slope stability and runout modelling of seismically/volcanically-induced landslide;
- Assessments of landslide and other ground-failure hazards in relation to deterministic earthquake and volcanic event scenarios or to regional probabilistic evaluations;
- Application of GIS techniques to evaluate and portray seismic and volcanic ground-failure hazards and risks;
-User requirements regarding risk assessment and persisting challenges.
- Studies on Soil liquefaction

A focused special issue in an EGU-journal will be edited based on the contributions of this session.

Session assets

Download all presentations (138MB)