TS4.2

Faults are complex three-dimensional geological objects that grow and change their properties over time (i.e., fourth dimension). Therefore, their thorough understanding intrinsically requires a three- and four- rather than two-dimensional analysis. In this session, we invite contributions that address the geometrical, kinematical, and the underlying mechanical characteristics of faults, by considering their inherent three- and four-dimensional nature. Considerations in this new light will bring us closer to fully address some of the fundamental questions in fault analysis: how do faults initiate? How do they evolve in space and time? How do they accommodate displacement and at what slip rates? Ideally, contributions should arise from analysis of a broad spectrum of data such as, among others, geophysical imaging, earthquake seismicity, outcrop (including novel virtual outcrop geology), and analogue and numerical modelling data. The integration of these different data types will provide insights on characteristics of faults at different scales and resolutions, and on their evolution at different time frames. We encourage contributions that explore the repercussions that a three- and four- rather than two-dimensional approach to the study of faults can have on a broad range of practical problems such as, among others, earthquake hazard assessment and fluid flow.

Share:
Co-organized by NH4/SM2
Convener: Giovanni CamanniECSECS | Co-conveners: Efstratios DelogkosECSECS, Michael KettermannECSECS, Vincent Roche, David Tanner
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)

Faults are complex three-dimensional geological objects that grow and change their properties over time (i.e., fourth dimension). Therefore, their thorough understanding intrinsically requires a three- and four- rather than two-dimensional analysis. In this session, we invite contributions that address the geometrical, kinematical, and the underlying mechanical characteristics of faults, by considering their inherent three- and four-dimensional nature. Considerations in this new light will bring us closer to fully address some of the fundamental questions in fault analysis: how do faults initiate? How do they evolve in space and time? How do they accommodate displacement and at what slip rates? Ideally, contributions should arise from analysis of a broad spectrum of data such as, among others, geophysical imaging, earthquake seismicity, outcrop (including novel virtual outcrop geology), and analogue and numerical modelling data. The integration of these different data types will provide insights on characteristics of faults at different scales and resolutions, and on their evolution at different time frames. We encourage contributions that explore the repercussions that a three- and four- rather than two-dimensional approach to the study of faults can have on a broad range of practical problems such as, among others, earthquake hazard assessment and fluid flow.

Session assets

Download all presentations (129MB)