CR3.4

Snow avalanches range among the most prominent natural hazards which threaten mountain communities worldwide. Snow avalanche formation is a complex critical phenomenon which starts with a failure processes at the scale of snow crystals and ends with the release of a large volume of snow at a scale of up to several hundred meters. The practical application of avalanche formation is avalanche forecasting, requiring a thorough understanding of the physical and mechanical properties of snow as well as the influence of meteorological boundary conditions (e.g. precipitation, wind and radiation).

This session aims to improve our understanding of avalanche formation processes and to foster the application to avalanche forecasting. We therefore welcome contributions from novel field, laboratory and numerical studies on topics including, but not limited to, the mechanical properties of snow, snow cover simulations, snow instability assessment, meteorological driving factors including drifting and blowing snow, spatial variability, avalanche release mechanics, remote avalanche detection and avalanche forecasting. While the main focus of this session is on avalanche formation, detection and forecasting, it is closely linked to session ‘CR3. Snow avalanche dynamics: from basic physical knowledge to mitigation strategies’, which addresses avalanche dynamics, risk assessment and mitigation strategies.

Share:
Co-organized by NH3
Convener: Johan Gaume | Co-conveners: Ingrid Reiweger, Alec van Herwijnen
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)

Snow avalanches range among the most prominent natural hazards which threaten mountain communities worldwide. Snow avalanche formation is a complex critical phenomenon which starts with a failure processes at the scale of snow crystals and ends with the release of a large volume of snow at a scale of up to several hundred meters. The practical application of avalanche formation is avalanche forecasting, requiring a thorough understanding of the physical and mechanical properties of snow as well as the influence of meteorological boundary conditions (e.g. precipitation, wind and radiation).

This session aims to improve our understanding of avalanche formation processes and to foster the application to avalanche forecasting. We therefore welcome contributions from novel field, laboratory and numerical studies on topics including, but not limited to, the mechanical properties of snow, snow cover simulations, snow instability assessment, meteorological driving factors including drifting and blowing snow, spatial variability, avalanche release mechanics, remote avalanche detection and avalanche forecasting. While the main focus of this session is on avalanche formation, detection and forecasting, it is closely linked to session ‘CR3. Snow avalanche dynamics: from basic physical knowledge to mitigation strategies’, which addresses avalanche dynamics, risk assessment and mitigation strategies.

Session assets

Session materials Session summary Download all presentations (201MB)